
NAVAL POSTGRADUATE SCHOOL
LO00 Monterey, California

~{,

r< < DTIC

DEC 2 9 1988 8A o

D c

T HSIS

DATA ADMINISTRATION FOR THE RAPID
ACQUISITION OF MANUFACTURED PARTS

by

Catherine T. Eads

and

Pamela A. Smith

September 1988

Thesis Advisor: Daniel R. Dolk

Approved for public release; distribution is unlimited

I U TY CLSSIFICATiON 0 'rH.PAGE..

REPORT DOCUMENTATION PAGE
I4. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release;
b, DECLASSIFICATIONID'OWNGRADING SCHEDULE distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6t OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(If applicable)

Naval Postgraduate School ICode 54 Naval Postgraduate School
6k. ADDRESS (City, State, and ZIPCode) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

8a. NAME OF FUNDING /SPONSORING Bb OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c. ADDRESS(City, Staite, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO ACCESSION NO

11. TITLE (Include Security Classulication)

DATA ADMINISTRATION FOR THE RAPID ACQUISITION OF MANUFACTURED PARTS

12. PERSONAL AUTHOR(S)

Eads. Catherine T. and Smith, Pamela A.
13a TYPE O REPORT 13b TIME COVERED 114 DATE OF REPORT (Year, Month,Day) 15 PAGE COUNT

Master's Thesis CROM TO 11988, September 106
16 SUPPLEMENTARY NOTATION

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the It of Defense or the U.S. Goverrznent.
17 COSATI CODES 18 SUBJEC' TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB.GROUD Data Administration; Flexible Manufacturing Syste

19 ABSTRACT (Continue on reverse it necessary and identity by block number)

Procurement of spare parts is both time consuming and costly for the Navy
The Rapid Acquisition of Manufactured Parts (RAMP) is a Navy program designed
to reduce the lead time required to procure small mechanical parts by up to
90%. RAMP is a flexible mart ring system (FMS) which will use computer
controlled equipment to produce 15,000 parts per year with an average lot siz
of four parts. A distributed system consisting of heterogeneous hardware,
software and data, the RAMP environment presents many database administration
difficulties.

This thesis presents an overview of the RAMP Manufacturing System, dis-
cusses the data administration issues found in distributed computing environ-
ments and flexible manufacturing systems, and suggests an expanded informatioc
resource dictionary system to manage and control RAMP's shared data. The

20 DISTRIBUlION AVAILA8ILITY C I ABSTRACT 21 ABSTRACI SECURITY CLASSIFICATION

•UNCLAS5Ir),IJN'IM2'[[SANt- AS OPT C3 DTiC USERS Unclassified
22a NA E Oý RE PON.S jI ;. Sli.g ' 22b TELEPHONE (Include AreaCode) 4Zc oFFICE SYMBOL
Pro?. Danley. R. UOI (408) 646-2260 Code 54Dk

DD FORM 1473, b, 63• B ;t A P-1 e:110-o mdv CA VW0 u'nT-I nvlduStLC SECURITY CLASSIFICATION Or THIS PAGE

All O 'Pr er 1innfs are ob•,eO te a U'S

Best Available Copy UNCLASSIFIED

UNCLASSIFIED
SECURITY CL.ASSIFICATION OF THIS PACE

#19 - ABSTRACT - (CONTINUED)

problem of maintaining consistency among multiple
databases in the event of a failure is examined.

'U!I

-.

Dist ~ '

ii UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

Approved for public release; distribution is unlimited

Data Administration for the Rapid
Acquisition of Manufactu='ed Parts

by

Catherine T. Eads
Lieutenant, United States Navy

B.A., Southern Illinois University, 1978

and

Pamela A. Smith
Lieutenant, United States Naval Reserve

B.S., Park College, 1981

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
September 1988

Authors: a, t .' - (' -
Cat leiine T. Eads Pamela A. Smith

Approved by: -
Daniel R. Dolk, Thesis Advisor

Alan W. McMasters, Second Reader

David- . hip , Chairman
Department of Adm istrative Sciences

Kneale T.-Mshal
Dean of Informatior and Policy Sc 4es

iii

ABSTRACT

Procurement of spare parts is both time consuming and

costly for the Navy. The Rapid Acquisition of Manufactured

Parts (RAMP) is a Navy program designed to reduce the lead

time required to procure small mechanical parts by up to

90%. RAMP is a flexible manufacturing system 9 FMS whicb

will use computer controlled equipment to produce 15,000

parts per year with an average lot size of four parts. A

distributed system consisting of heterogeneous hardware,

software and data, the RAMP environment presents many

database administration difficulties.

This thesis presents an overview of the RAMP Manufactur-

ing System, discusses the data administration issues found

in distributed computing environments and flexible

manufacturing systems, and suggests an expanded information

resource dictionary system to manage and control RAMP's

shared data. The problem of maintaining consistency among

multiple databases in the event of a failure is examined. I "V

iv

TABLE OF CONTENTS

I. INTRODUCTION -- 1

A. BACKGROUND--1

B. OBJECTIVE--5

C. SCOPE--5

D. PREVIEW--- 6

II. RAMP AND THE RAMP DATABASE---------------------------- 7

A. INTRODUCTION--------------------------------------- 7

B. SYSTEM OVERVIEW---------------------------------- 10

C. FUNCTIONAL COMPONENT DESCRIPTIONS--------------- 14

D. CONTROL SYSTEM----------------------------------- 26

E. EXTERNAL INFORMATION INTERFACES------------------ 34

F. SUMMARY-- 36

III. DATA ADMINISTRATION IN DISTRIBUTED COMPUTING
ENVIRONMENTS--- 38

A. INTRODUCTION------------------------------------- 38

B. DISTRIBUTED PROCESSING AND FLEXIBLE
MANUFACTURING-------------------------------------- 38

C. DATA ADMINISTRATION CONSIDERATIONS-------------- 46

D. AN ARCHITECTURE FOR DISTRIBUTED DATA
MANAGEMENT IN CIM-------------------------------- 57

E. SUMMARY--- 65

IV. DATABASE ADMINISTRATION ISSUES IN RAMP--------------67

A. INTRODUCTION--------------------------------------- 67

B. NEED FOR AN INFORMATION RESOURCE
DICTIONARY SYSTEM---------------------------------- 68

C. INFORMATION RESOURCE DICTIONARY
SYSTEM OVERVIEW----------------------------------- 74

D. EXPANDED IRD SCHEMA FOR RAMP--------------------- 79

E. DATA ADMINISTRATION------------------------------- 85

F. SUMMARY--- 91

V. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS-------------93

A. SUMMARY-- 93

B. CONCLUSIONS AND RECOMMENDATIONS----------------- 95

LIST OF REFERENCES--- 97

/ ~INITIAL DISTRIBUTION LIST----------------------------------- 99

iti

I. INTRODUCTION

A. BACKGROUND

Computers have revolutionized manufacturing production

processes. "Advances in automation technology will soon

yield fully automated factories which operate under the

concept of computer integrated manufacturing (CIM)." [Ref.

l:p. 8] Beginning with an order request, CIM automation

will eventually direct all stages of the production process

from initial order receipt to design, engineering,

production and actual shipment. While CIM has yet to be

fully realized, a companion technology and prerequisite to

complete factory automation does exist. Flexible

Manufacturing Systems (FMS) are a way station towards CIM

and are providing substantial benefits in manufacturing

industries today.

Flexible manufacturing systems are "computer controlled

production systems that produce a family of parts in a

flexible manner." (Ref. 2:p. 11] Parts that are similar in

size and shape, or which must flow through a similar

production process are grouped into families. Software then

dictates the actual part to be produced, thus eliminating

the expensive and time-consuming process of retooling that

is common to traditional manufacturing environments. An

I.......

additional benefit of FMS is that it dramatically reduces

lead time requirements.

The U.S. Navy recognizes these benefits, and has

developed a test and integration facility at Charleston

Naval Shipyard (CNSY) for the development of an FMS. The

program--Rapid Acquisition of Manufactured Parts (RAMP)--is

estimated to reduce lead-time requirements up to 90%,

thereby providing a substantial benefit to fleet operational

capabilities. While traditional manufacturing is geared

towards the mass production of a single item, RAMP is geared

toward the production of any one of a family of 15,000 parts

with an average lot size of only four. Once operational,

the concept will be installed at CNSY and other naval

shipyards, and eventually to private industries if demand

warrants.

RAMP is an hierarchical distributed system containing

heterogeneous hardware, software and data. It includes

various numerical control machine tools which perform the

physical manipulations required to produce any one of the

cylindrical or prismatic parts to be manufactured. A

three-level hierarchy--cell, workstation, and device--is

employed to control processing. Each item produced goes

through four functional components--Manufacturing

Engineering, Production and Inventory Control, Manufactur-

ing, and Quality--before it is shipped to its destination.

All components are integrated, and generally require

2

information from previous steps to perform their tasks. A

fifth function--Information Management and Communica-

tion--provides the linking mechanism between these

components.

This kind of corruterized manufacturing environment

presents many difficulties when it comes to designing an

appropriate architecture. This is especially true ':ith

respect to the various databases which will exist in the

system. Heterogeneous distribution requires more careful

consideration of certain data administration issues than do

centralized, or even homogeneous distributed systems.

Communication is complicated by the need to translate dif-

ferent "languages" used by the various functional compon-

ents, and to transfer and share data between components. A

network also requires additional considerations for

security. Simultaneous access requirements by different

components of the system require mechanisms to prevent the

database situations known as deadlock and livelock, and to

ensure that one update does not overwrite another. If two

processes are simultaneously waiting for access to data that

the other controls, neither process can proceed and deadlock

results. If, on the other hand, a priority system were

employed to determine which process proceeds first,

mechanisms must be in place to ensure that the other process

is not continually preempted thus causing livelock.

3

Another critical issue in a distributed FMS environment

is determining the scope or granularity of a transaction

which dictates exactly when various databases are physically

modified. Does a transaction encompass the entire

production of a part, or can transactions be decomposed into

smaller processes such as cutting or boring a piece of

metal? The strategy selected has significant implications

for data integrity and database efficiency. In an

atmosphere where accurate data is central to the very

existence and efficient operation of the facility, backup

and recovery functions are also exceedingly crucial.

Finally, because there are many different components which

require access to shared data, a system-wide information

resource management mechanism must exist to coordinate these

data-oriented activities and enforce the necessary degree of

data administration.

The Integrated Manufacturing Database Administration

System (IMDAS) was developed by the National Bureau of

Standards (NBS) as a baseline architecture for FMS. It

provides a structure that can be tailored to meet the

specific needs of a particular environment. While IMDAS

doeF address ,e data administration issues which are

generic to FMS, it cannot address those which will be

peculiar to "tailored" implementations. RAMP therefore must

consider the additional data administration issues that will

4

be encountered in its unique environment. This issue is the

primary focus of this thesis.

B. OBJECTIVE

The purpose of this thesis is to identify those aspects

of data administration which we consider salient to RAMP

that have not yet been adquately addressed in the

documentation we've studied. In addition, we propose an

information resource dictionary 7ystem (IRDS) to facilitate

the data administration functions of the unique RAMP

environment.

C. SCOPE

Much of the information upon which this thesis is based

emanated from the RAMP "mall Mechanical Parts Critical

Design Review (SMP CDR) held in Charleston, SC August 30 and

31, 1988. However, neither the CDR nor any other document

available to us during the preparation of this thesis

provided any detailed specification of the RAMP database

architecture. It is possible, therefore, that some of the

observations arnd recommendations made herein may

subsequently be inappropriate for the eventual RAMP database

configuration. It is not our intention to criticize any

subcontractors associated with the RAMP project but rather

to shed light on database issues we think have been

inadequately addressed from the limited information we had

available.

5

D. PREVIEW

Chapter II provides an overview of the RAMP facility at

CNSY. In Chapter III, the reader is given a general

overview of distributed computer systems, and the data

administration complexities found in heterogeneous CIM and

FMS environments. Chapter IV proposes an Information

Resource Dictionary System (IRDS) tailored to the unique

needs of RAMP, and then addresses the specific data

administration aspects which need to be more fully addressed

in the RAMP architecture. Conclusions and recommendations

are provided in Chapter V.

6

II. RAMP AND THE RAMP DATABASE

A. INTRODUCTION

The Rapid Acquisition of Manufactured Parts (RAMP) is a

Navy program for the procurement of small mechanical parts

(SMP) and printed wiring assemblies (PWA). This thesis,

however, will focus only on the procurement of small

mechanical parts. Procurement of spare parts is both time

consuming and costly for the Navy. Small mechanical parts

may take as long as 300-400 days to procure. The cost in

terms of fleet readiness of such a delay is very high.

The procurement process begins when a ship or aircraft

requisitions a part from the Ships Parts Control Center

(SPCC) or the Aviation Supply Office (ASO). If the part is

not available from the supply system, these inventory

control points (ICPs) will issue an invitation for bid

(IFB). Various manufacturers will then submit bid proposals

to provide the part. Following the closing of the bidding

process, the proposals are reviewed, a mLtanufacturer is

selected, and finally the contract is awarded. When

drawings and specifications for the part are not readily

available, the procurement process is delayed even further.

The selected manufacturer begins the engineering and design

process necessary to produce the part. The manufacturer

must set up and retool for production whether the quantity

7

'- ft l.

is six or 6000. Eventually production is completed and

parts are shipped. [Ref. 3:p. 4]

A ship requiring a particular part in order to deploy

must obtain the part from another ship if it is not

immediately available through the supply system. That ship

in turn may need to obtain the part from still another ship

in order to meet its deployment schedule. This process

could be repeated several times before the part is received

from a manufacturer 300-400 days later. During this period,

fleet readiness has been impaired.

While maintaining large inventories is costly and

inefficient, the long lead time required for procurement of

replacement parts or spares is also unacceptable.

Typically, procurement administrative lead time and

manufacturing administrative lead time consume about 90% of

the procurement cycle while actual production comprises

about 10% [Ref. 4:p. 4]. The goals of RAMP are to reduce

these long lead times, decrease costs, and improve fleet

readiness by introducing technologies such as electronic

data transfer, computer-aided design (CAD) and computer-

aided manufacturing (CAM) into the Navy logistics system.

As shown in Figure 1, procurement administrative lead time

and manufacturing administrative lead time are expected to

be reduced by up to 90%.

A RAMP Test and Integration Facility (RTIF) has been

established in Charleston, South Carolina for the planning,

8

-'| *$

ý4

0

E0

C: 0, 1 ~ 1 ¾
H 0 0-

H: 0

E ..E ,-

C: F; (1)

0
a)

0

4)

4) '0

0 0j -- E- H

00

C 4

J.

development, testing, and demonstration of the RAMP concept.

Once the RTIF becomes operational, a RAMP capability will be

installed at the Charleston Naval Shipyard (CNSY). Trans-

ferring RAMP technology to other Naval facilities and

to private industry is a secondary long term goal of the

RAMP program. [Ref. 5:p. 6]

B. SYSTEM OVERVIEW

Traditional manufacturing is geared to the high volume

production of a single item and does not lend itself to the

rapid production of small quantities of many different

parts. However, only one or a few parts may be needed. A

Flexible Manufacturing System (FMS) is one in which it is

possible to produce on demand any part from a selected group

or family of parts, without incurring system downtime to

change equipment [Ref. 6:p. 342]. Parts which have nearly

the same size and shape, or parts which share the same or

similar sequence of production operations are considered a

family of parts.

1. Parts Produced by RAMP

The RAMP SMP Manufacturing System is designed to be

an FMS and produce a wide variety of cylindrical and
prismatic parts. Table 1 lists sample part types to be

manufactured by the RAMP SMP system. Cylindrical parts will

be not more than 24 inches in length and 12 inches in

diameter. Prismatic parts will be not more than 24 inches

in length, 8 inches in depth and 12 inches in height. Part

10

TABLE 1

TYPICAL TYPES OF SMALL MECHANICAL PARTS
TO BE PRODUCED BY THE RAMP SMP

Adapter Fitting Round Blank
Angle, leg Gear Round Flange
Ball Gland Round Pad
Bearing Guide Shaft
Body Handle Sleeve
Bolt Nipple Socket
Bonnet Nozzle Socket end
Boss Nut Spacer
Bracket Pin Stem
Bushing Plate, backing Stud
Butt, end Plug Support
Cam Prismatic Blank Tailpiece
Cap Prismatic Flange Tee
Case, gear Prismatic Pad Threadpiece
Collar Reducer Union
Connector Ring Washer
Coupling Roller "Y" Branch
Elbow

Source: [Ref. 7:p. 8]

materials include aluminum, brass, bronze, copper nickel,

and steel. [Ref. 5:pp. 27-29]

2. RAMP Processes

The manufacturing processes required to produce

these parts are metal sawing, turning, milling, drilling,

tapping, broaching, boring, deburring, and washing. The

necessary equipment includes a broaching machine, a

horizontal band saw, drill grinders, deburring equipment, a

numeric control coordinate measuring machine, and a vertical

band saw.

11

A process plan indicates what steps or processes

must be taken, and in what order, to produce a given part.

For example, a process plan may be:

- material preparation,

- fixture,

- turning center,

- unfixture,

- fixture,

- horizontal machining center,

- unfixture,

- deburr,

- wash,

- inspect, and

- package.

Fixturing refers to holding or securing a piece while it is

being processed. [Ref. 7:pp. 14-25]

Material handling within the RAMP SMP will be

accomplished by conveyor, automated guided vehicle (AGV),

and manual equipment such as forklifts and hand trucks [Ref.

7:p. 22].

3. ProcureMent under RAMP

By applying technologies such as CAD and CAM to

segments of the procurement cycle and linking the ICP

electronically with RAMP manufacturers (including CNSY),

procurement administrative lead time and manufacturing

administrative lead time can be significantly reduced. When

12

mmmmI

a part is requisitioned, the ICP determines whether the part

is available and, if not, whether the part is designated a

RAMP part. The ICP will then use an electronic bulletin

board to issue the IFB and to make information, such as part

specifications, available to RAMP manufacturers. The

manufacturers in turn also use the electronic bulletin board

to submit bid proposals. A proposal is selected, the

contract awarded and production begins. The RAMP

manufacturer notifies the ICP when the part or parts have

been shipped. The procurement cycle under RAMP is virtually

paperless. [Ref. 3:p. 4]

The RAMP SMP Manufacturing System at Charleston

Naval Shipyard will be linked with currently existing

shipyard functions such as Supply, Central Tool Supply/Tool

Management, Equipment and Facility Maintenance, Payroll, and

Quality Services. In addition, the RAMP SMP will interface

with Navy ordering activities, tooling vendors and cognizant

technical authorities. [Ref. 5:p. 7] The Navy ordering

activity will transmit six-month forecasts of required

repair parts and actual orders for parts to the RAMP SMP.

Forecasts of required parts allows for the pre-provisioning

of raw materials. It is anticipated that the RAMP SMP

system will initially produce 15,000 parts per year with an

average lot size of four parts. Shipment of replacement

parts will occur on average within 27 days of receipt of the

order. [Ref. 7 :p. 18]

13

The required materials and the electronic part

technical data (EPTD) must be available at CNSY in order to

meet the shipment date. The EPTD describes the part and its

attributes and tolerances, and is provided to the RAMP SMP

by the Navy EPTD Generation Facility. [Ref. 5:p. 42]

C. FUNCTIONAL COMPONENT DESCRIPTIONS

The RAMP SMP computer system consists of five functional

components: Production and Inventory Control, Manufacturing

Engineering, Manufacturing, Quality, and Information

Management and Communications.

These functional components, their high level

interfaces, and the interfaces external to RAMP are shown in

Figure 2. [Ref. 6:p. 4] Each functional component

represents a cell node of the RAMP network architecture.

Functional components store data in, and retrieve data

from, data stores which are databases or files located at

the various nodes. Data which are required by only one

functional component reside at only one node. Data which

must be shared by more than one functional component reside

in a common database. Table 2 provides a list of RAMP SMP

data stores.

1. Production and Inventory Control

The Production and Inventory Control component

performs the following functions:

- Capacity Requirements Planning,

- Production Control,

14

II F(T

Y, L)

4J

(D

I.15

TABLE 2

RAMP SMP DATA STORES

Common Data Stores

Order Requisitions
Process Plan Cell Control
Resources Quality
Shop Work Order EPTD
Inventory Planned Preventive Maintenance
Production Routing Order Status
Manufacturing Instructions Post Processed Program
Quality Data Part Pedigree
Tool Library

Local Data Stores

Production and Inventory Control

Bill of Material Order Administrative Data
Group and Sequence Rules Order Inquiry
Inventory on Order Forecasted Orders
Long Lead Time Criteria Pre-provisioned Criteria
Long Lead Time Items

Manufacturing

Tool Inventory Active Tool Assemblies
Equipment Operations Transportation Request
Pallet Assignments Tool Kits
Reduction Criteria Work Station Operations
Tool Request Queue Fixture Inventory
Machine Set Up Used Tool Listing
Status, StateData Non-Perishable Tool Inventory
Reduced Data Transportation Command Library
Pallet Routing Cost Data
Maintenance Log Equipment Specifications
Preventive Maintenance Requirements

Manufacturinct Engineering

Operation Time Standard Group Technology Code Criteria
Fixture Library N/C Source
N/C Library Tool Catalog
Tooling Catalog

Quality

Pedigree Data

16

- Order Entry, and

- Material Inventory Management.

Orders for parts are received from the Navy ordering

activity and order status data is returned. Requests for

the generation of a process plan are sent from Production

and Inventory Control to the Manufacturing Engineering

component. Requests to generate inspection instructions are

forwarded to the Quality component. Production and

Inventory Control will convert the EPTD received in the

parts order into a format usable by the CAD component. This

new format is the Internal Part Technical Data (IPTD) and is

written to the IPTD data store. [Ref. 8:pp. 25-63] Produc-

tion and Inventory Control accesses the data stores as shown

in Table 3.

2. Manufacturing Engineering

The Manufacturing Engineering component performs the

following functions:

- Check for Repeat Part,

- Code and Classify Part,

- Select Similar Process Plan,

- Revise Process Plan,

- Determine Stock Requirements, and

- Generate Detailed Manufacturing Instructions.

This component determines whether a process plan exists for

the part. If one does not exist, a process plan for a part

within the same family is selected to serve as the base plan

17

TABLE 3

PRODUCTION AND INVENTORY CONTROL
DATA ACCESSES

Data Store Type of Access

Inventory Read/Write
Resources Read/Write
Order Read/Write
Shop Work Order Read/Write
Bill of Material Read/Write
Process Plan Read
Planned Preventive Maintenance Read
Order Administrative Data Read/Write
Production Routing Read
Group and Sequence Rules Read
Released Shop Work Order Write
Order Status Read/Write
IPTD (Internal Part Technical Data) Write
Order Inquiry Read/Write
Inventory on Order Read/Write
Forecasted Orders Read/Write
Long Lead Time Criteria Read
Pre-Provisioned Criteria Read
Long Lead Time Items Read/Write

for the generation of a new process plan. Manufacturing

Engineering notifies Production and Inventory Control when

the process plan is complete. From the process plan,

detailed manufacturing instructions are generated to

determine raw material requirements and to select fixturing

configurations and tooling requirements. [Ref. 8:pp. 139-

177' Manufacturing Engineering accesses the data stores as

shown in Table 4.

3. Manufactgrinct

The Manufacturing component performs the following

functions:

18

TABLE 4

MANUFACTURING ENGINEERING
DATA ACCESSES

Data Stores Type of Access

Tool Library Read/Write
Inventory Read
Resources Read
Process Plan Read/Write
Production Routing Write
Order Status Read/Write
IPTD Read/Write
Manufacturing Instructions Read/Write
Post Processed Program Write
Bill of Material Read/Write
GT Code Criteria Read
OperationTimeStandard Read
Fixture Library Read
N/C Source Read/Write
N/C Library Read
Tool Catalog Read
Tooling Catalog Read

- Schedules Shop Resources,

-Controls and Monitors the Shop Floor,

- Provides Transportation Control,

- Controls Tooling and Production Equipment, and

- Determines Maintenance Requirements.

Upon receipt of the detailed manufacturing instructions from

Manufacturing Engineering, the Manufacturing component

generates instructions for the production equipment,

including numerical control (NC) source code for NC

operations. [Ref. 8:pp. 65-137] Manufacturing accesses the

data stores as shown in Table 5.

19

TABLE 5

MANUFACTURING
DATA ACCESSES

Data Store Type of Access

Tool Inventory Read/Write
Tool Library Read
Inventory Write
Resources Read/Write
Process Plan Read
Planned Preventive Maintenance Write
Released Shop Order Read
Order Status Write
Manufacturing Instructions Read
Active Tool Assemblies Read/Write
Equipment Operations Read/Write
Transportation Request Read/Write
Pallet Assignments Read/Write
Tool Kits Read/Write
Reduction Criteria Read
Work Stationi Operations Read/Write
Tool Request Queue Read/Write
Fixture Inventory Read/Write
Post Processed Program Read
Machine Set Up Read/Write
Used Tool Listing Read
Non-Perishable Tool Inventory Read/Write
Transportation Command Library Read
Status, State Data Read/Write
Reduced Data Read/Write
Pallet Routing Write
QualityData Write
Part Pedigree Write
Cost Data Write
Equipment Specifications Read
Maintenance Log Read/Write
Preventive Maintenance Requirements Read

4. Quality

The Quality component performs the following

functions:

- Generate Final Inspection Instructions,

- Determine Disposition of Quarantined Parts,

20

- Analyze and Report Quality Data,

- Assemble Part Pedigree, and

- Validate Part Manufacture.

Upon receipt of a request from Production and Inventory

Control, the Quality component generates the final

inspection instructions. When a shop work order is

completed by Manufacturing, a part pedigree is assembled.

The pedigree data contains all information concerning the

raw materials and the equipment operations performed on the

raw materials. The pedigree data, part specifications and

inspection results are evaluated. [Ref. 8:pp. 178-187] The

Quality component accesses the data stores as shown in Table

6.

TABLE 6

QUALITY DATA ACCESSES

Data Store Type of Access

Order Status Write
IPTD Read
Manufacturing Instructions Write
Quality Data Read/Write
Part Pedigree Read/Write

5. Information Management and Communications

Information Management and Communications provides

the network to link all of the other functional components.

The functional components store data in local databases and

up load the data to a common database when requested. When

21

data are needed by a functional component to perform its

part in the production process and are not available

locally, the data are requested through Information

Management. This functional component provides the database

management system (DBMS) to integrate the various databases

and provide the shared data needed by the application

programs. Local databases and the common databases are

connected as shown in Figure 3. [Ref. 9:p. 2.0-L3] Local

databases may or may not be relational depending on the

environment and requirements at that node. The functional

components (Production and Inventory Control, Manufacturing

Engineering, Manufacturing, and Quality) are comprised of

heterogeneous off-the-shelf application programs written in

high order languages such as COBOL, FORTRAN, and C

languages. [Ref. 8:p. 188] The DBMS of the Information

Management component provides the access to the databases

necessary to an application through logical user views.

Figure 4 shows the Information Management component at the

center controlling (by the DBMS) access to the shared data

stores.

Also in Figure 4 is the Communications component

shown around Information Management. It provides the links

to the functional components (and their applications) and

the links to functions external to RAMP (Navy Ordering

Activity, Type Desk, RAMP Management, Supply, Receiving

Inspection, Quality Assurance, and Maintenance). The

22

DATBAS ACCESS~AP~

SC - PIC j I1rc

OAIAOA~ ACCESS OAIACJA J MUNICEXSS OACCESS CES AIIA CCS

CON- COMNCTOSSSE-FL RE URN EDN

LocAAGl Daabse 9Rf 93p 34-R

.,V' zxx 13.

{,Y 923

.CCMPEE

AL

1 2 3 4 \
1 To S Production
RAMP and." CMa.

FUNTIOALande r Manufacturing 1Manufacturing Quality
COMPONENTS Control (Mn~e~rn

I5.2 Communications

SITE I _ _ _ - - - - - - - - -

FUNCTIONAL

COMPONENTS

NM 5. 1 Information Management (Shared Data Stores)

"Ordnn 002 004 006 008 Shop
Too Librar Inenor Reouce Work Order

-22 -- ---------- - - - - - - - - - -4

SITE
M. IeK-o

FUNCTIONAL Maaeet Supl kApcIo O,~ Mantnce

CO MPON INS [M SI___

Figure 4. RAMP Top Level communications
System Model [Ref. 8:Appx . III,
p . 17]

42

Communication System will provide file and message exchange

services for the application functions, data handling, links

to other networks, and data communications management.

[Ref. 8:pp. 193-194]

While local data will be managed at the local level,

the common database is managed by the DBMS provided by

Information Management as shown in Figure 3. This DBMS will

have the following capabilities:

- Applications Interface to RAMP System Database,

- On-line/Interactive Data Dictionary,

- On-line/Interactive Applications Development,

- On-line/Interactive Report Generator,

- Database Recovery, and

- Database Security. (Ref. 8:p. 188]

The data dictionary will contain data element and

relational data model definitions as well as ownership and

security data. Structured Query Language (SQL) commands

will be processed by the Data Dictionary Function which will

create and maintain the schemas, the logical user views,

data control declarations to restrict access, and security

declarations. [Ref. 8:p. 189] Chapter IV will examine the

use of an Information Resource Dictionary System to

facilitate the implementation of the dictionary and

directory functions in the RAMP architecture.

The Applications Development Function provides the

user with the capability to use and modify terminal displays

25

with an interactive "screen painter." The user may also

create applications with access to databases. Using SQL

statements, the user may generate reports, forms and mailing

labels through the Report Generator Function. [Ref. 8:pp.

189-190]

The Database Recovery Function protects against user

program failure, system hardware or software failure and

disk media failure. Before-and-After images of updates to

the common database will be recorded on the recovery log.

"Roll Back" and "Roll Forward" will be used to recover the

common database. [Ref. 8:p. 191]

Use of the RAMP common database will be controlled

by the Database Security Function which will process SQL

statements granting or revoking access privileges to tables

and logical user views. [Ref. 8:pp. 191-192]

D. CONTROL SYSTEM

Each device or piece of equipment and each process

necessary to produce a part in the RAMP SMP Manufacturing

System is controlled by its own individual software or

application package. It is anticipated that this individual

software will be commercial off-the-shelf (COTS) software.

The discussion which follows describes the control

architecture used to coordinate RAMP resources in this

environment of distributed COTS applications.

26

1. Control Hierarchy

Control within the RAMP SMP Manufacturing System is

hierarchical (Figure 5). The RAMP functional components

(Production and Inventory Control, Manufacturing Engineer-

ing, Manufacturing, Quality, Information Management and

Communications) are at the cell level in the hierarchy.

[Ref. 7:p. 33]

Workstations are controlled by the cell controllers.

One or more devices or pieces of equipment on the factory

floor comprise a workstation. Each workstation controls one

or more device controllers. Local databases and DBMSs exist

at the workstation level as well as at the cell level.

[Ref. 7:p. 34]

At the lowest level are device controllers which

control one or more devices or equipment such as numerically

controlled machine tools. Equipment level controllers do

not have associated databases but rather depend on the

workstation controller for data. [Ref. 9:p. 3.1-9L]

The RAMP SMP functional components reside at nodes

of the network. A network view of the RAMP cell,

workstation and device control system is shown in Figure 6.

Specific equipment is indicated by Dl, D2, D3 and is

controlled by the device controllers.

2. RAMP Order ManaQer

Data which is required only by a single functional

component or by a workstation will reside in a local

27

WOW(STAT14ON

frt I

/1 ~EaJOENU

~cc4L~5,DATA DI

S TATUVSTATK LPOATIE

Figure 5. RAMP Hierarchy [Ref. 9:p. 3.1-7L]

28

Z 0

zo >

((0

00

co~~ I N C

ccxc

w

w U 0 u
Z0

0 0

0 L w l) 4~J

o CC)

0.

z2

database. The local databases are tied to the COTS packages

and may be relational in structure or simply file structures

depending upon what the COTS supports. All data which needs

to be shared by more than one functional component will

reside in a common database. This common database will be

managed by the DBMS provided by the Information Management

component. RAMP must integrate and control these devices

and processes and the sequence in which the processes occur.

Data from the common database necessary to cn application

must be transferred to and from the local database.

The RAMP Order Manager (ROM) provides the

centralized management of all RAMP applications software and

the processing of all requests. The ROM exists at the

System level of the RAMP Control Hierarchy shown in Figure

5. The ROM software will be developed in the C language.

This software will be completely independent of the

commercial off-the-shelf software used by the manufacturing

equipment or the applications [Ref. 9:p. 3.3.1.2].

The ROM is event driven which means it issues

commands to, and receives status reports from, the

functional components. There are three functional

components of ROM: ROM Manager, Process Manager and

Application Manager. Figure 7 shows the relationships

between them. The ROM Manager coordinates ROM processing,

accepts all status data and routes the status data to the

30

LLJ
'Lii

-J L& i

i ~LLI
0o-

o0 '
U00
o 0

F-J F-
Lii)

Lu

'(

PROCESS PROCESS am-~< APUAlN APLICATION APPULCAnlN
p -ONFRCflOT OAIA

QAAMANAGER APPUCATIN FINIS) ED MANAGER O'LICUA TT4

z

0

Ppocxtss APPLICADOC*
C14~CXPO4NT O-ECXPCINT 0 0

D[POANA F DATA -J

- LU

0 x Q
OLI

Figure 7. ROM Functional Components [Ref. 9:p. 3.3.1.2-L81

31.

appropriate ROM component, either the Process Manager or the

Application Manager. [Ref. 9:p. 3.3.1.2-R9]

The Process Manager processes requests received from

the ROM Manager, such as orders or inquiries, and manages

the sequence of application packages necessary to complete a

request. Each sequence is considered a "process." For

example, a process may include the following applications:

- initiate order,

- create process plan,

- determine projected item delivery,

- reserve capacity,

- process plan error recovery, and

- reject order.

When a request status is received, the Process Manager

determines the process necessary to satisfy the request and

the first application in that process. In this example, the

first application is "initiate order." It then requests the

Application Manager to invoke the first application. When

the Application Manager responds that the application is

completed, the Process Manager determines the next applica-

tion, in this case "create process plan," and requests the

Application Manager to execute it. If the Application

Manager had responded with a status indicating that the

"initiate order" application did not complete, the Process

Manager would have determined the next application to be

"reject order." When the entire sequence or process is

32

completed, the Process Manager issues a Request Complete

status. [Ref. 9:p. 3.3.1.2-Rl0-R1I]

When a request to initiate an application is

received from the Process Manager, the Application Manager

checks for the availability of that application and, if

available, issues a command to down load the necessary data

to the appropriate RAMP functional component. A "Down Load

Complete" status is received from the ROM Manager at which

time the Application Manager issues the command to execute

the application. When the application has executed

successfully, the Application Manager issues a command to up

load the data to the common database. The ROM Manager

informs the Application Manager when the up load has

completed. The common database is now updated and current.

At this point the Application Manager informs the Prccess

Manager that the application execution has completed. [Ref.

9:p. 3.3.1.2 R13-L16]

The ROM maintains configuration tables or decision

tables to define both processes and applications. In the

previous example, the Application Manager returned a status

message to indicate whether or not the "initiate order"

application successfully completed. The Process Manager

consults a decision table to determine the next application,

in this case either "create process plan" or "reject order."

These decision tables are maintained as status tables which

are initialized from the configuration tables. As each

33

status is received, ROM checks the status table to determine

the command to be issued. Checkpoint files are updated

after every status message to provide redundancy to the

status tables. This redundancy also allows the system to be

restarted from the checkpoint files. [Ref. 9:p. 3.3.1.2-R3]

E. EXTERNAL INFORMATION INTERFACES 1

The RAMP SMP Manufacturing System installed at CNSY will

be linked with the following shipyard functions: Type Desk,

Supply, Receiving Inspection, Quality Assurance, Mainte-

nance, RAMP Management, and Navy Order Activity.

The Type Desk will send Order and Order Inquiry messages

to Production and Inventory Control. Order Status messages

will be returned. An Order message will contain the

Electronic Part Technical Data.

Material Replenishment Requisition messages from

Production and Inventory Control to the Supply department

will contain the Job Material List. The Supply department

will return a Projected Material Delivery message.

When material is received at the shipyard and is

available to RAMP, a Material Receipt message will be sent

from the Receiving Inspection to Production and Inventory

Control.

The RAMP Quality component will send a Part Quarantine

Notice message to shipyard Quality Assurance when a part

iInformation for this section was drawn from [Ref. 10]

34

fails a quality inspection. A Part Pedigree message will be

sent when a part has passed inspection and is ready to be

shipped. Quality Report messages from RAMP Quality to

shipyard Quality Assurance will summarize production

quality. Shipyard Quality Assurance will send Part

Quarantine Disposition messages to the RAMP Quality function

in order to provide instructions for the disposition of

parts which fail to pass inspection.

The RAMP Manufacturing component sends a Tool

Requisition message to the Supply department when tools or

fixtures are needed. The Supply department will respond

with a Tool Availability Date message. When the tool is

shipped to RAMP, a Tool Receipt message is sent from Supply

to the Manufacturing component.

A Maintenance Outage Request message is sent from RAMP

Manufacturing to shipyard Maintenance whenever immediate

maintenance is needed due to equipment failure. Maintenance

Committed Time messages are returned to the Manufacturing

component and indicate the date and time for which repair is

scheduled to begin and end. Preventive Maintenance Request

messages from Manufacturing initiate the Maintenance

Schedule messages from shipyard Maintenance.

RAMP Management, a shipyard function, informs

Manufacturing of changes in data collection requirements by

a Reduction Criteria Update message. Criteria Update

messages from RAMP Management to Manufacturing Engineering

35

allow for changes, such as part classification, to be made

to that functional component.

In order to provide for sufficient inventory of

material, Forecast messages containing raw material

requirements will Le sent from the Navy Ordering Activity to

the Production and Inventory Control component.

F. SUMMARY

Procurement of spare parts has long been a problem for

the Navy. Long lead times in the procurement cycle impair

fleet readiness. The RAMP SMP Manufacturing System is a

flexible manufacturing system designed to produce a wide

variety of low volume parts on demand. On-hand inventories

are reduced and at the same time fleet readiness is

improved.

Both automated and manual processes will be present in

the RAMP SMP. CAD/CAM and Computer-Aided Process Planning

(CAPP) systems are integral to the RAMP SMP. The RAMP

control system is hierarchal. Operations are computer

controlled and event driven. RAMP internal processes store

data in and retrieve data from both local databases and a

common database. Because the RAMP SMP Manufacturing System

will be installed at the Charleston Navy Shipyard (CNSY),

interfaces with CNSY departments must be established.

There is a wide variety of equipment, much of it

computer con.trolled, physically distributed throughout the

factory floor. The physical and functional systems of RAMP

36

must be integrated through a control system to provide a

complete manufacturing unit. The next chapter will take a

close look at some of the complexities inherent in a

distributed environment such as RAMP. In particular, the

data administration issues which exist in Computer

Integrated Manufacturing and Flexible Manufacturing Systems

will be examined. The ramifications of these issues in the

RAMP system will then be discussed in Chapter IV.

k3

37

III. DATA ADMINISTRATION IN DISTRIBUTED
COMPUTING ENVIRONMENTS

A. INTRODUCTION

This chapter provides the conceptual foundation for

understanding the data administration aspects of the Navy's

RAMP project to be presented in Chapter IV. Section B

establishes the need for distributed processing in a

flexible manufacturing environment. Section C explores the

data administration issues that must be addressed in such a

system. Section D presents a data administration

architecture developed by the National Bureau of Standards

to manage FMS environments. Section E concludes the chapter

with a summary of the salient distributed data issues in

FMS.

B. DISTRIBUTED PROCESSING AND FLEXIBLE MANUFACTURING

In order to gain an appreciation for the complexities

involved in managing a flexible manufacturing or computer

integrated manufacturing environment, this chapter begins by

defining distributed processing. It then establishes the

need for distributed computing in this type of manufacturing

technology by briefly discussing the major functions

involved in the process.

38

1. Distributed Computer Systems

Distributed computing is a relatively new field,

which is experiencing explosive growth:

In recent years there has been a dramatic dial iii the cost
of hardware processors and memory, combined with similar
cost reductions and technological advances in the
communications field. The result has been to make
computer networks and interconnected computer systems a
viable and cost effective solution in many environments.
[Ref. ll:p. 1]

While there is no accepted definition of distributed

computer systems, they generally involve some degree of

distribution of processing, control, and/or data.

Distributed systems imply multiple processing units but the

mere physical separation of these components is not

indicative of a distributed systpm. There must be

functional partitioning of processors as well as interaction

among the various functional components, preferrably while

providing a single s-ztem image. These characteristics

are summarized below:

A distributed processing system is one in which several
autonomous prccessors and data store supporting processes
and/or databases.. .cooperate to achieve an overall goal.
The processes ccirdinate their activities and exchange
information b. means of intormation transferred over a
communications network. [Ref. ll:p. 4]

The three general types of distribution are briefly

discussed in the following sections.

a. Distributed Processing

Distributed Processing refers to the manner in

which the hardware of the system "processes" the various

tasks to be performed. There must be at least two

39

computers, each with its own local memory and processor.

This reflects not only physical distribution, but may also

provide function distribution, where each of the different

computers performs its own function of the complete process.

An essential element here is some form of communications

network which enables these distributed computers to

cooperate with one another. Without this cooperation to

achieve a common goal there would be no distribution, but

rather two isoloated computers performing their own

independent tasks.

b. Distribution of Control

There are different ways of providing

coordination among the various components of the system.

One method is to use a centralized strategy, where one

control mechanism "controls" interaction among both the

physical and logical resources of the system. If control is

distributed, however, one approach is to use a sort of

hierarchy, with each level responsible for a particular area

of coordination. Still another method of providing

distributed control is to allow all of the individual

processors complete autonomy over their local resources. In

this case an additional goal of the system is to provide

some degree of "transparency" in order to mask the physical

distribution and heterogeneity of its components.

40

-- 77---Ir77777

c. Data Distribution

Perhaps the single most important resource

requiring control in any computer system is the data. Data

can be distributed across the system in various ways.

Replicated data provides individual copies of all of the

data at every node in the system. Data that is partitioned

stores different pieces of data at various components of the

system. Hybrid data distribution is a data placement scheme

that does a little of both. In RAMP, data that are needed

by only a single functional component are stored in a local

database while data that needs to be shared among the

various components are stored in a global database.

One of the major advantages of distributed

systems is the increased degree of flexibility provided. In

order to provide interaction among the various components,

distributed systems must be constructed in a very modular

manner, with well-defined interfaces. Because of this

requirement, properly designed distributed systems have the

added advantage of being able to adapt to technological or

software changes without significantly affecting the other

components of the system. This flexibility is a major

requirement in the computer integrated manufacturing (CIM)

environment discussed below.

2. Distribution and Computer Integrated Manufacturing

Distributed computer systems require significant

partitioning and interaction among the functional components

41

17

and tasks of the system. This is complex enough when the

system is composed of homogeneous hardware and/or software,

but even more problematic in flexible manufacturing systems

(FMS) where the environment encountered is more likely one

containing heterogeneous components. Beeby identifies the

substantial advantage of heterogeneity, however: "new

computing products can be incorporated as they become

available." [Ref. 12 :p. 103] This philosophy is

exemplified by RAMP's use of commercial off the shelf (COTS)

application packages which control the local databases. As

newer, more efficient software packages become available,

they can be substituted with minimal disruption to

operations.

Davis et al., identify the following functions

which must be integrated in a CIM environment:

- marketing and sales,

- manufacturing data preparation,

- production planning and inventory control,

- production scheduling,

- process supervision, and

- quality assurance. [Ref. 13:p. 1]

The system must additionally provide the tools necessary

for:

- defining the necessary infcrmation,

- inputting the necessary information,

- locating and accessing the necessary information,

42

- - -------- . -- -- - - - ------...-..-

- communicating the necessary information,

- displaying the necessary information, and

- updating the necessary information. [Ref. 14:p. 78]

A brief synopsis of CIM functions and their RAMP

counterparts is given below.

a. Marketing and Sales

The primary interface between a customer and a

manufacturing facility is the marketing and sales function.

Data required here centers around available products,

including price, specifications, and delivery schedules.

Before new products are introduced, this function determines

their profit potential. The data required here can be

generally classified as administrative. This function

currently resides external to RAMP.

b. Manufacturing Data Preparation

This function is equivalent to the "Manufactur-

ing Engineering Function" in RAMP. All of the functions

necessary to generate the data required in the manufacturing

of a part or product are included in this function. For

example, the engineering department translates the

-7 customer's requirements into product designs which include

"detailed three dimensional drawings, geometry data,

tolerances, and other required manufacturing

specifications." [Ref 13:p. 3] Computer Aided Design (CAD)

and Computer Aided Engineering (CAE) tools are often

involved. This function is further complicated by the fact

43

....... .~

that dihferent engineering functions have different data

requirements. The data required for manufacturing can be

categorized as highly technical and math-intensive, in sharp

contrast to the administrative data required by the previous

function.

c. Production Planning and Inventory Control

Called "Production and Inventory Control" in

RAMP, this function is responsible for developing a list of

the actual jobs to be completed over a specified period of

time (next month, for example). All of the hardware such as

n/c machines required for drilling, boring, metal sawing,

turning, broaching, and deburring of the scheduled products

are listed. The inventory control function ensures that all

raw materials needed for the process will be available.

Again, the data needed to generate these detailed production

plans bear little resemblance to the data required in

previous functions.

d. Production Scheduling

This is the function which controls the daily

workload of the enterprise. Detailed schedules are

developed for the operations required to complete the jobs

issued by the detailed production plan created in the

previous section. The exact sequence of tasks to be

performed in the production process, as well as anticipated

start and finishing times are assigned. Extensive

interprocess coordination provides continuous monitoring of

44

-I!

the feedback from process supervisors to ensure that all raw

materials are in place, and machine tools are available.

[Ref. 13:p. 4] The data required here must be accurately

generated from previous functions of the process.

Production Scheduling in conjunction with Process

Supervision comprise the "Manufacturing" component found in

RAMP.

e. Process Supervision

The process supervisor serves two main

functions. First, he implements the instructions from the

process plan for every operation. He then monitors the

process to ensure the actual compliance with the

instructions. He may intercede to slow down or speed up a

machine tool, or make other minor changes in the processing.

Any major deviations, however, will require additional

intructions from previous functions.

f. Quality Assurance
Termed "Quality" in RAMP, the final function in

this process is quality assurance which is divided into two

main areas. First, output from each process is verified to

ensure that it meets the specifications provided by the

manufacturing data preparation function. When errors are

found, this information is used to correct problems in the

designs, process plans, and the actual processes. The

second function is used to predict machine maintenance and

replacement requirements. This information relates to

45

actual machine performance. Historical data related to the

product such as CAD designs, process plans, inspection and

machining procedures, and materials used are also kept by

this function.

C. DATA ADMINISTRATION CONSIDERATIONS

This section motivates the need for data management, and

then details specific data administratic~r issues which must

be considered for CIM.

1. Data Management

The CIM environment is a heterogeneous one

containing multiple databases and data types, contained in

different hardware configurations, and accessed by a wide

variety of users and applications. These complexities are

compounded by the requirement for simultaneous &. cess and

update capabilities. The more complex the environment, the

more crucial the data management function. Inaccurate

databases or repeated down-time will rapidly undo the

benefits of FMS so data management is a function that must

be given special consideration.

Data management is further complicated by the

individual characteristics of the data required by the

functions discussed in the previous section. Part models

and process plans, for example, may be accessed and updated

several times a month and require several kilobytes of

storage each. Equipment status data on the other hand,

requires continuous updating on only a few hundred bytes of

46

data. These factors impact data management strategies in

various ways.

It is a major factor in the decisioii to distribute or
centralize data. It influences the choice of topology,
pFotocol, and packetizing strategy for the network...and
plays a prominent role in scheduling responses to data
requests and for performing query optimization. [Ref.
13:p. 10]

The RAMP environment is highly heterogeneous with

each application having its own local data store and thus

different capabilities for sharing and accessing data.

There must therefore be an underlying mechanism to disguise

the differences among these various data environments. This

is accomplished through generation of local conceptual

schemas which define logical relationships among data

elements contained in local databases, a universal data

definition language which defines those schemas, and finally

a data manipulation language to be used for data storage and

retrieval. A global data model defines how the local data

are related and a directory indicates where data are

distributed throughout the system.

There must be a mechanism for a user to access the

global database. A user should not be required to know

exactly how or where a particular piece of data is stored;

he should merely be able to request it and have it delivered

in the format required. This requires a global data

manipulation language (DML) as well as local DMLs for the

local databases.

47

Finally, there must be a mechanism for maintaining

the integrity of the databases. These issues are the topic

of the next section.

2. Data Administration

Previous sections discussed the diverse nature of

the data found in computer integrated manufacturing. What

needs to be done to guarantee, however, that the data

required by each function is in fact the correct data? How

can CIM ensure that only authorized users, be they people or

other computers, have access to the data needed. What needs

to be done to accommodate the simultaneous requests by users

for access to the same data resource? What mechanism exists

to restore the contents of the databases in the event of

hardware or software failure? Finally, what type of

mechanism exists to "facilitate the data sharing, reduce

data redundancy, and provide an integrated environment for

data manipulation"? [Ref. 15:p. 48] In Data Administration

(DA) terminology, these questions are acidressedby the

following policies:

- database integrity,

- database security,

- database update and concurrency control,

- database back-up and recovery,

- information resource management.

4-'4

48

a. Database Integrity

One of the major issues of the integrity

function is that of ensuring that the values that are in the

database are only those values that are allowed to be there.

This function of validity involves ensuring that only

acceptable data values are entered into the database.

, UHowever this only guarantees that the values fall within a

predefined range, not that the database contains accurate

values. Other aspects of data integrity attempt to ensure

that data accuracy is maintained.

b. Database Security

Database security addresses the issue of

allowing only authorized users access to data. This

includes access resulting from both innocent mistakes such

as keying errors and deliberate attempts to penetrate the

system.

Access and Capabilities lists assist in the

_ security function. These lists control who is allowed

ý- Paccess, and what they are allowed to do once access is

granted. They identify the resources that require

I protection, and all individuals/terminals/programs that

1 require access to those resources. Passwords are another

1 common form of security mechanism.

.;. .Access can be controlled by individual, specific

hardware device, application, time of day, department, etc.,

j or any combination thereof. For example, production

49

~o. .. 7

engineers may be granted access to all database fields

relating to actual production of a part, but restricted from

accessing any financial information required by the

marketing department. They may have full capabilities

including update, add, delete, calculate and reading rights,

or they may be restricted to one or more of the capabilities

only. Establishing the appropriate view is a vital step in

the database design process.

In a distributed environment there is the

additional security concern of ensuring that data will not

be intercepted by an unauthorized user while it is traveling

across the network. If the system is penetrated, data

encryption renders the data meaningless to the penetrator

without the decryption code. Two types of encryption are

possible. In the first "data is encrypted, transmitted

through the communications system, and decrypted at the

destination node." A second type of encryption mechanism is

one "which actually encrypts the data before it is stored on

the database." The most secure system employs both methods.

[Ref. 16:p. 94]

c. Database Update and Concurrency Control

One of the main purposes of database management

is to allow multiple users to share data. No problem arises

as long as they are accessing the data for 'read-only'

purposes. This we know is not the case in the CIM

50

..- ~--..,,•.

environment, and other measures must be taken to prevent the

following from occurring:

- two transactions are simultaneously updating the same
data item,

- one transaction is reading an item while another is
updating the same item,

r- two transactions requiring the same data items are
waiting for each other (deadlock),

-one transaction is continually preempted by others
requiring the same items (livelock). [Ref. 13:p. 12]

These issues are further complicated in an environment like

RAMP which uses either replicated or hybrid data distribu-

tion. With multiple copies of the database, consistency and

integrity must be maintained within a single database, as

well as among the various copies of the database. Concur-

rency control mechanisms to address these potential problems

are generally based on a two-phase locking or timestamp

ordering approach.

When the locking approach is used, flags are

used to "lock" specific data items. These items can range

from an individual data attribute, to a particular record,

or even to the entire database. Necessary operations are

performed on the data and the flags reset to indicate that

the locks have been released. There are various locking

approaches Some, such as the global locking approach,

ensure that all copies of the database are in agreement all

of the time. This approach requires significant communica-

tion overhead, however. Others force a reduced level of

51

consistency where at a. given time all copies of the

database may not be consistent. Additionally, while these

approaches address the simultaneous read and update issues,

they do nothing to prevent deadlock and livelock from

occurring.

Timestamp ordering techniques assign a read and

a write timestamp to each transaction. A problem arises in

a distributed environment, however, "since each node has its

own internal clock, and it is very difficult to synchronize

them precisely to ensure that there is a single network-wide

clock." [Ref. 16:p. 1.26] Although timestamps assist in

eliminating deadlock and livelock, there is "considerable

overhead involved in storing timestamps for all the data

items in the databases." [Ref. 13:p. 13] The problem in

5W RAMP is that we may have local data environments with

different concurrecy mechanisms (timestamping in one;

two-phase locking in the other, for example). The RAMP

Order Manager (ROM) must ensure that these environments do

•I not conflict and compromise data integrity.

d. Transaction Granularity

Transactions or logical units of work (LUW) are

predefined segments of processing which, when completed

cause the physical database(s) to be modified. Until an LUW

is actually completed, all changes made to the database

"during that time are stored in temporary buffers rather than

the database itself. In RAMP a transaction could be defined

:.v " .52

- - . 77 - -

as an entire process, i.e., production of an entire part, or

simply as the delivery of a partially completed part to its

next workstation. In either case locks are employed to

prevent other processes from updating any data items which

the transaction accesses until the transaction has been

committed, or logged as completed.

Suppose a transaction were defined to encompass

the entire production of a part. If write locks were

applied, no other process would be able to access any of the

part-related database items until after the entire part

processes were completed. Although certain phases would

have actually be:en completed, their related databases would

not reflect this status since no database commits take place

until the entire transactionhas been completed. Further,

other processes would continue to be locked out unnecessari-

ly when access really could have been granted. This may

degrade overall system performance unsatisfactorily. If, on

the other hand, the transaction granularity were defined too

small, a large number of commits would be made to the

databases, access to data resources would increase, but

database recovery would now become significantly more

difficult if the process aborted before completion. Both

situations affect database recovery strategies.

e. Database Back-up and Recovery

There are three major functions involved in the

back-up/recovery function. First, data must be retained for

53

•: • ,• • : •! • ...7-7 .-- ...- ..-. . . . ! " : 7 7.. •

use in recovering an operation which aborts. This includes

saving and storing all of the data needed in the event a

failure occurs. Second are the procedures themselves which

enable the database to be restored. Third are control

procedures to be used to ensure that once the database is

restored its integrity is maintained.

Failures can occur for various reasons:

- read/write heads scratching the disk surface,

- power svr 'ly is interrupted,

- operating system error,

- operator error,

- program or transaction abnormal ending (abend),

- manufacturing and/or computing hardware failure.

Whatever the cause, it is critical that recovery procedures

. 'be initiated. A single production process failure may

require that multiple databases on multiple machines be

restored. Before-and-after images and checkpoints can be

used to restore the databases to their states prior to a

failure, but not without considerable overhead. Maintaining

before/after images extracts a serious efficiency penalty

since each transaction must be entered into the image

journal as well as into the databases themselves. Journals

take additional disk space, and could actually prevent some

of the time critical requirements of the CIM environment

from being met.

............. 5 4

f. Information Resource Management

A final area of data administration is an

integrated information resource management tool for

facilitating data integrity and monitoring database

efficiency. This tool is called an information resource

dictionary system (IRDS).

An IRDS is a "logically centralized repository

of data about all relevant information resources within an

organization." [Ref. 15:p. 49] It contains the logical

data models for each database, as well as the physical

information required to access them. The data dictionary

component is used to record, store and process information

related to the logical aspects of the system. This metadata

or "data about data" is not concerned with the validity of

the data within the databases; its sole function is to

provide a description of them. For example, suppose we have

a file in a CIM database called PARTS. The dictionary

component would have such information as a listing of the

fields within the file (partno, part_name, etc.), where the

data comes from, particular integrity constraints which must

be adhered to, which programs access the file, and so on.

The actual values for part_no, part_name, etc. would not

reside in the dictionary, however, but rather in one or more

operational databases. Note that this type of information

is logical in nature.

55

The directory component of the IRDS maintains

all metadata about the physical aspects of the system. This

includes information relating to the actual physical

location of the data and the methods or resources which

access them. The directory component which relates to the

PARTS file in the example above would contain information on

such aspects of the file as where the file is physically

stored, what file structure is employed,and what operating

systems are used.

An IRDS can be further characterized as being

active or passive, depending upon the "scope of control

exercised through metadata management." [Ref. 17:p. 21) If

a program or process depends upon the metadata provided by

the IRDS in order to perform its function, the IRDS is

active. If, on the other hand, that same program can obtain

its metadata from other sources outside the IRDS, the IRDS

is passive. The IRDS may, in this case, simply document the

metadata after the fact.

An IRDS is particularly necessary in a

distributed environment and may itself be distributed.

Regardless of the data distribution scheme employed, an

IRDS is required to "support the development and operation

of distributed databases." [Ref. 17:p. 56] If data are

replicated, the IRDS must keep track of all of the known

4 redundancies toroughout the system. When data are

partitioned, the IRDS must know how all of the various

56

...........

~T T~TT~TTT77

pieces fit together to form the "whole" ,database, in a

manner which is transparent to the user.

Particularly in the heterogeneous CIM environ-

ment, locating the required data is only half the problem.

Once found, the data will more than likely undergo a complex

process of data translation before it gets to the requestor.

Upon return, this same translation process is required once

again. Since both hardware and software in a heterogeneous

environment may differ from node to node, this translation

involves not only individual "languages" (such as a

translation from ORACLE to INGRES), but also machine

specific translations (such as from ASCII to EBCDIC, or a

32-bit word to a 16-bit word). When the DBMS's themselves

are different, as is more than likely the case, a logical

translation of the data structures is also necessary. The

IRDS facilitates the translation process by storing metadata

mappings and access paths to allow the source to be

transformed into the target data [Ref. 17:p. 236].

We now review a data administration architecture

developed by the National Bureau of Standards (NBS) that

addresss the problems we have discussed in the distributed

computer integrated manufacturing environment.

D. AN ARCHITECTURE FOR DISTRIBUTED DATA MANAGEMENT IN CIM

Previous sections described how flexible manufacturing

and computer integrated manufacturing systems will require a

network of heterogeneous hardware/software systems. An

57

additional problem encountered in this type of environment

is the requirement for real-time access. This section is

devoted to reviewing a prototype developed by (NBS) to

facilitate the data sharing requirements of the CIM

environment.

1. Background

As discussed above, a fundamental characteristic of

the CIM enviroment is the diversity of computer systems:

Rarely does the same kind of computer perform engineering
support, real-time control and administrative applica-
tions. Consequently, data sharing is complicated by
differing operating systems, hardware architectures, data
systems and access methods. To get the same information
from two different machines, expect to use two different
interfaces, phrase the request in two different
'languages' and get back the information in two different
forms. Since data systems range from very limited to very
powerful, it is possible for one of two data systems to
lack a capability that another has. [Ref. 18:p. 44]

Since data in the CIM environment must be shared

extensively among all of the different components, and in

light of the requirement for heterogeneity, more often than

not multiple databases are created with some degree of

overlap. An update to one therefore necessitates an update

to others. Manufacturing Automation Protocols (MAP) were

created to standardize the interchange of files between any

two computer systems [Ref. 19:p. 66]. This is not

sufficient for the CIM environment, however, since simple

files must be first extracted from complex databases before

the protocol can be employed. To accomplish this,

application programs would have to "know" not only the

58

location of the data they use, but also-their organization.

Since these two factors are constantly changing as new

applications and equipment are added, this is not a

practical option.

A better approach is to provide a common interface

between programs and databases. A change in architecture

would require only a change to the interface, not to the

applications. This is the premise upon which the NBS

prototype is built.

2. The Integrated Manufacturing Data Administration
System

The National Bureau of Standards developed the

Integrated Manufacturing Data Administration System (IMDAS)

to support its Automated Manufacturing Research Facility

(AMRF). AMRF represents an experimental facility for the

research of small batch manufacturing. This environment is
representative of other FMS and CIM environments in that it

contains a heterogenous distributed database environment for

managing manufacturing design, planning, and control

databases.

IMDAS is characterized by:

- a common interface to user programs, and

- a common interface to underlying databases. [Ref.
18:p. 46]

These interfaces provide an environment in which nrogrammers

need not concern themselves with the physical location of

data, but rather are given the logical view of a single

59

common database. Communication with IMDAS occurs through

use of the ANSI-standard Structured Query Language (SQL)

which has been modified to allow programs to specify files

or buffers as sources and sinks of data.

IMDAS is structured in a four-level hierarchy, as

depicted in Figure 8. The higher the level in this

tree-like structu:.'e, the more data is administered. Since

the lowest level is not an actual level per se, but depicts

instead the local DBMS's throughout the system, the

discussion of IMDAS begins with the Basic Data

Administration System (BDAS).

a. Basic Data Administration System

Providing a common interface between user

programs and databases is the premise upon which IMDAS is

built. It is actually at this level, the PDAS, that this

functL takes place.

The Interprocess Communications function

provides the mechanism through which various processes can

communicate with each other. Under the shared memory

approach employed by IMDAS, an originating process stores':! information of a particular kind or for a particular

recipient into a designated area of the shared memory, and a

ii :I retrieving process interested in a particular information

set fetches it from the pre-assigned area. [Ref 20: p. 20]

This approach facilitates real-time data acquisition.

60

Master Data
Administration MDAS
Sy st em

Distributed Data
Admi n ist rat ion DDAS i DDASSSYS t ems

- - - - - -

Ad;wi n i st- rat ion L3DAS BDAS
Sy st ems

Dat ~anDBMS DBMS

Source: (Ref. 18]

Figure 8. The IMDAS Hierarchy

61

Interface between the standard !MDAS data form

and the underlying DBMS is provided by the command

translator/data translator (CT/DT) process. Data is

translated from the representation provided by the local

(source) DBMS to the IMDAS or common representation, and

then from the common format to that of the destination DBMS.

The global data manipulation language mentioned previously

is translated into the "language" understood by the local

DBMS or file manager.

The BDAS, in conjuction with the local DBMS

provides the actual access to and manipulation of the local

databases [Ref. 20:p. 22]. This function provides

assistance in the DA functions of consistency, concurrency

and recovery by providing the capability to read and write

to the local files, as well as locking and unlocking them to

prevent access when necessary.

As depicted in Figure 8, there are multiple

BDAS peers in the hierarchy. The Basic Service Executive

provides a c ,imon interface between these BDAS's and the

Distributed Data Administration System above them.

b. Distributed Data Administration System

The Distributed Data Administration System

(DDAS) provides the interface between the BDAS(s) below it

and the Master Data Administration System to be discussed

next. There are multiple DDAS's, each responsible for

interfacing with a particular group of component systems.

62

----- ~-.- -.- -

Each DDAS contains a data directory for .the local database

assigned to it as well as directory information from its

subordinate BDAS's. This fragmentation directory provides

a conceptual view representing the domain of that DDAS.

The following information is included:

- the schema and mapping information needed for the
global conceptual and fragmented views of data residing
on subordinate BDAS's;

- the mapping information for the external and conceptual
views of the data referenced by the control processes
which that DDAS supports;

- the security constraints associated with the views of
the data referenced by the control processes which that
DDAS supports;

- the integrity constraints associated with data in the
subordinate BDAS's;

- the data delivery information required by the network
interprocess communication functions to construct
delivery paths; and,

- the information representing the capability of each
subordinate DBMS or Command Translator. [Ref. 20:p.30]

When data are retrieved from multiple sources,

or limited LBMS services are provided to one of the local

databases, a Data Assembly Service (DAS) assembles data

using joins, unions, and intersection record merging. Note

that the IRDS can be the repository for the fragmentation

directory.

A transaction manager (TM) schedules a

collection of tasks (transaction) for execution based upon

other activity in the system. Where necessary, it

distributes different tasks among several BDAS's for

63

execution. The two-phase locking approach used for

concurrency control requires that any transactions requiring

access to data that is currently being referenced or

modified must wait until that process is concluded before

proceeding. Finally, a recovery function brings the

database back to a consistent state following a failure or

integrity violation. Those tasks that cannot be

accomplished by the DDAS are passed onto the Master Data

Administration System. Note that the TM is essentially the

ROM in the RAMP world.

c. Master Data Administration System

At the highest level of the hierarchy is the

Master Data Administration System (MDAS0 whose function is

"to coordinate the activities of the DDAS's. These

activities include:

-managing the master data directory,

- resolving concurrency problems,

- directing initialization.

- directing integration and recovery.

Its construction is virtually identical to that of the

DDAS's. Instead of all of the metadata provided by the

directory function of the DDAS, however, the directory

function of the MDAS describes the DDAS's. Its TM

coordinates execution of tasks among various DDAS's.

As a final note, each DDAS contains the needed

code to perform the task of MDAS. The system manager can

64

therefore designate an MDAS in the event of a system crash

or failure.

The RAMP architecture uses a similar

hierarchical structure. The BDAS is basically equivalent to

running an application program at the workstation level.

While the cells in RAMP perform limited transaction

management functions, they do control various workstations

in a manner akin to the DDAS controlling the BDASs. By

combining the ROM with the IRDS, along with the transaction

manay-r found in RAMP, overall control of the cells is

managed similar to the manner in which MDAS controls the

various DDASs. The major deviation from this hierarchy lies

in the fact that individual cells cannot be designated as

the ROM like any DDAS can be designated an MDAS.

E. SUMMARY

This chapter began by providing a working definition for

distributed computer processing. It then discussed why such

an environment is necessary to support computer integrated

manufacturing and flexible manufacturing systems. After

discussing some of the data administration problems inherent

in such an environment, the pivotal role of an !RDS in

''v facilitating data administration in a heterogeneous

distributed database environment was discussed. Finally,

the chapter concluded with an overview of a data administra-

tion architecture under development by the Bureau of

Standards to manage this environment and suggessted that the

65

IRDS is a tool which could be used to implement the IMDAS

approach.

RAMP is based upon the IMDAS architecturE ar of

the generic data administration issues diszussed this

chapter have been considered in its design. in 'hhaoter :V

we will review some of the additional RAILP-spý-cifi; daua

administration problems which need to be reszlved.

4,
6

/ 66

IV. DATABASE ADMINISTRATION ISSUES IN RAMP

A. INTRODUCTION

The RAMP SMP Manufacturing System is designed to satisfy

the need within the Navy to reduce the lead time and costs

associated with procuring spare and replacement parts.

Flexible Manufacturing can provide the capability to produce

needed parts in small quantit4:K and to produce them

quickly. Flexible Manufacturiii, Systems (FMS) are flexible

because they can produce a wide variety of parts, and

because new technology and products can be added to the

system without significant reconfiguration of hardware and

software [Ref. 6:p. 343]. An FMS integrates heterogeneous

equipment, hardware, software, and data systems. It is this

integration of the various technologies necessary to a

manufacturing environment which is the challenge in

designing an FMS.

Integrated and flexible systems such as RAMP reqitire

distribution of processing and sharing of data. Data

administration in a distributed environmcnt is comrrle and

distribution which includes different hardware, software and

database structures, is even more so.

The previous chapter discussed distribui- plucessing

and its inherent data administration problems. Now we

examine more closely the structure of an Information

67

Resource Dictionary System (IRDS) and suggest ways in which

an IRDS can be tailored to the RAMP manufacturing

environment. Data administration problems introduced in

Chapter III are also discussed in terms of the RAMP SMP

Manufacturing System environment.

B. NEED FOR AN INFORMATION RESOURCE DICTIONARY SYSTEM

There is a need for extensive data sharing in the RAMP

SMP System. The entire process of manufacturing a part or

parts from the receipt of an order to the shipment of the

part is heavily dependent upon ensuring that the data, such

as Electronic Part Technical Data and Process Plans, are

available for each application. Much of the data maintained

in the data stores are used by more than one application or

program. However, i' Flexible Manufacturing Systems such as

RAMP, each application may require the data to be organized

or structured in different formats [Ref. 18:p. 2].

1. Data Organization in RAMP

The CheckforCapacityProblem and the Determine

Capacit°_iivailability modules within the capacity_

Requirew2rnts Planning program of the Production and

Inveni-ory Tontrol component provide an example of data

org,2.ization , use within the RAMP SMP System (Figure 9).

The Check _or Capacity Problem module is initiated by an

activity n.tification from the EstimateProcessing Times

-odule of Manufacturing Engineering component. This nodule

accesses The Process Plan ddta store to obtain Process

68

uJ-u

<0<-~o~uJ Q
wH

ww

7~ >1

(n 0 < HLL1cc

LU

CL ,)
0-<< nw

w- w

ccc

< C

Time Estimates. . :de- Request Date is obtained from the

Order Administtrative lat& szore. This date is used to

establish the time frane in whic,. the part must be produced.

The Resources data stc -s acce,ý.sed to obtain the Total

AvailableProcessingT.lme w:'-hin the established time frame.

-Dreventive Maintenance Resey•Tations (scheduled down time)

are obtained from the PI'annec Preventive Maintenance data

N'x store. All of the data ProcessTimeEstimates,

Order Request Date, To'tal Ava,'-able Pc-ocessingTime,

Preventive Maintenance J? es0•r-x, t-ons) are used by the

• Check_for_Capacity P.•blem modul*e to determine if the

,.- required amount of pr-1cess :ng time will exceed the net

available time. If the required time c'oes exceed available

capacity, a capacity problem messý,-7 I.s sent to the Review

Capacity Exceptions module of the 04anuiuacturing Engineering

component. [Ref. 2.:p. 1]
The Determine Capacity Availability module is

41?•[initiated by a "request capacity'" notice from the Determine

Shop Work Order Release module. The Determine Capacity

Availability ivodule also accesses the Resources data store

to obtain the TotalAvailable Processing Time and the

Planned Preventive Maintenance data store to obtain

Preventive Maintenance Reservations. Additionally, a

committed completion date is obtained from the

Shop Work Order data store. These data (Total Available

Processing Time, Preventive Maintenance Reservations,

70

CommittedCompletionDate) are used to determine available

capacity. If there is sufficient capacity available for the

work order, a Capacity__Reservation is applied to the

Resources data store and an "available capacity" message is

sent to Determine_ShopWorkOrderRelease. [Ref. 21:p. 2]

As depicted in Figure 9, both of these modules

require some of the same data. Each module also requires

additional data from different data stores in order to yield

the information necessary for each to perform its function.

2. Data Management

A relational data model is appropriate to capture

the data needed by the systems, applications and programs.

As the raw data are used, shared and manipulated by

different applications for different purposes, the need for

data integrity and consistency becomes paramount. A Data

Base Management System (DBMS) to manage and control usage

of, and access to, the data is necessary to ensure integrity

and consistency. A Data Dictionary/Directory System

(DD/DS), as an integral part of the DBMS, similarly manages

and controls the metadata, or data about the data [Ref.

17:p. 11].

By forcing all applications to depend on the DD/DS

for metadata, the DD/DS controls the component programs' and

processes' access to data and further ensures data integrity

and consistency [Ref. 17:p. 17]. Such a DD/DS is considered

to be active.

71

In addition to providing consistent metadata, an

active DD/DS provides other benefits as well. An active

DD/DS controls the usage of the metadata and provides for

greater data security. Data used by more than one component

system or program need to be defined only once. Changes to

the metadata are controlled and more easily propagated

throughout a distributed system. Generating metadata for

the user programs allows for greater data independence.

[Ref. 17:p. 119] Documentation of the database is also more

accurate and timely [Ref. 17:p. 144].

The RAMP SMP environment is comprised of several

different software systems and hardware configurations

necessary to achieve efficient equipment operation on the

factory floor. The various automated systems and equipment

in this heterogeneous environment are distributed over an

Open Systems Interconnection (OSI) communication network

[Ref. 7:p. 35]. Multiple databases are accessed by multiple

functional components, programs or modules. Because there

exist multiple databases and DBMSs in the RAMP environment,

a system-wide DD/DS is required which is independent of any

specific DBMS. This DD/DS, in conjunction with the ROM,

form the equivalent of the MDAS in the NBS model.

To simplify the multiple database/multiple DBMS

environment, the RAMP SMP System takes advantage of

commercial off-the-shelf (COTS) DBMSs to manage local

databases. Data needed by a functional component

72

application must be converted into the local format when

down loaded from the common database. [Ref. 9:p. 3.3.1.3-

R9] Conversely, data required by more than one cell or

workstation will be up loaded to the common database upon

the completion of an application. This common data will

necessarily undergo a translation or conversion from the

local database format to the common database format.

A relational data model of this integrated database

environment is appropriate. However, a typical DD/DS

provided by relational systems is limited in the

capabilities it can provide. An Information Resource

Dictionary System (IRDS) is an expanded DD/DS, which is much

broader in scope and capable of capturing more data to model

precisely the RAMP SMP system. While a typical DD/DS is

concerned only with the data resource, an IRDS contains

metadata about other resources such as processes, programs,

hardware, and users of the system, as well. In addition,

the IRDS captures how all these resources are interrelated.

A relational DBMS (RDBMS), through its DD/DS, may contain

data about a parts file such as part number, vendor and

price. An IRDS may contain not only this metadata but also

which programs, such as an inventory_controlprogram,

process this file and which users run the inventory program.

Relationships are defined as well as data elements. [Ref.

15:pp. 48-49]

73

C. INFORMATION RESOURCE DICTIONARY SYSTEM OVERVIEW

The Federal Infornition Processing Standard (FIPS)

specifies an TRDS which provides the previously mentioned

benefits of a DD/DS plus the capability to tailor the

dictionary to a specific environment [Ref. 15:p. 48].

1. Core System-Standard Schema

The FIPS IRDS is comprised of a Core System-Standard

Schema. This core IRDS consists of the Information Resource

Dictionary (IRD) and the IRD Schema. The IRD Schema

describes and controls the IRD which in turn describes and

controls the actual data. [Ref. 22:p. 115] Based on the

entity-relationship model, the IRDS is strongly typed so

that each entity, relationship and attribute in the IRD is

an instance of an entity-type, relationship-type or

attribute-type in the IRD Schema, respectively. Relation-

ships are directed and binary, and entities may be related

to themselves. Both entities and relationships may have

associated attributes. [Ref. 2 2:p. 114]

2. Information Resource Dictionary (IRD) Schema

The IRD Schema is defined in terms of the entity-

relationship model and consists of entity-types,

relationship-types and attribute-types which describe the

entity, relationship and attribute instances of the IRD. As

shown in Table 7, there are 12 entity-types in the core

syster-standard schema. Eight of these are Data entity-

types: File, Record, Element, Document, Bit-String,

74

TABLE 7

CORE SYSTEM-STANDARD SCHEMA TYPES

Entity-types

SYSTEM FILE BIT-STRING
PROGRAM RECORD CHARACTER-STRING
MODULE ELEMENT FIXED-POINT
USER DOCUMENT FLOAT

Attribute-types

Entity-related:

ACCESS-NAME DURATION-VALUE
ADDED-BY HIGH-OF-RANGE
ALLOWABLE-VALUE LAST-MODIFICATION-DATE
ALTERNATE-NAME LAST-MODIFIED-BY
CLASSIFICATION LOCATION
CODE-LIST-LOCATION LOW-OF-RANGE
COMMENTS NUMBER-OF-LINES-OF-CODE
DATA-CLASS NUMBER-OF-MODIFICATIONS
DATE-ADDED NUMBER-OF-RECORDS
DESCRIPTION RECORD-CATEGORY
DESCRIPTIVE-NAME SECURITY
DOCUMENT-CATEGORY SYSTEM

DURATION-TYPE

Relationship-related:

ACCESS-METHOD FREQUENCY
RELATIVE-POSITION

Relationship-types

CONTAINS GOES-TO
PROCESSES CALLS
RESPONSIBLE-FOR DERIVED-FROM
RUNS REPRESENTED-AS

Source: [Ref. 15:p. 50]

75

Character-String, Fixed-Point, and Float. System, Program,

and Module are Process entity-types and User is an External

entity-type. [Ref.15:pp. 50-51]

The attribute-types are associated either with

entity-types or with relationship-types. Some attribute-

types are common to all entity-types, such as Description

and Comments. Ot';r attribute-types, such as Number-of-

Lines-of-Code and Number-of-Records, are associated with

only one or a few entity-types. Audit trail information is

provided by attribute-types such as Date-Added and Last-

Modified-By. The attribute-types Access-Method, Relative-

Position, and Frequency are associated with relationship-

types. [Ref. 15:p. 51]

The core system-standard relationship-types describe

the associations between entity-types.)r example,

Program-Contains-Module and Document-Derived-from-File are

relationship-types. Limiting which entity-types may

participate in which relationship-types helps to maintain

integrity within the IRDS. For example, because relation-

ships are dihected, the relationship File-Contains-Record is

valid while Record-Contains-File is not. Aliowable

rel.atiunships, in the format Relationship(Entitytype,

Entitytype), are listed in Table 8. [Ref. 15:p. 51]

3. IRDS Facilities

An Extensibility facility allows additional schema

descriptors to be added to the core system-standard schema

A 76

TABLE 8

IRDS RELATIONSHIPS

CONTAINS(system,system) PROCESSES(system, file)
CONTAIIl.S(systemprogram) PROCESSES(system,document)
CONTAINS(system,module) PROCESSES(systemrecord)
CONTAINS(program,program) PROCESSES(system,element)
CONTAINS(program,module) PROCESSES(program, file)
CONTAINS(module,module) PROCESSES(programdocument)
CONTAINS(file,file) PROCESSES(program,record)
CONTAINS(file,document) PROCESSES(program. element)
CONTAINS(file,record) PROCESSES(module,file)
CONTAINS(file,element) PROCESSES(module,document)
CONTAINS(document,document) PROCESSES(module,record)
CONTAINS(document,record) PROCESSES(module,element)
CONTAINS(document,element) PROCESSES(user,file)
CONTAINS(record,record) PROCESSES(user,document)
CONTAINS(record,element) PROCESSES(user,record)
CONTAINS(element,element) PROCESSES (user,element)

RESPFOR(user,file) DERIVED FROM(document,file)SRESPFOR(user,document) DERIVEDFROM(document,document)
RESPFOR(user,record) DERIVEDFROM(document,record)
RESPFOR(user,element) DERIVED FROM(element,file)
RESP FOR(user,system) DERIVED FROM(element,document)
RESPFOR(user,Drogram) DERIVED FROM(element,record)
RESP-FOR(user,module) DERIVED-FROM(element,element)

DERIVEDFROM(file,document)
RUNS(user,system) DERIVED FROM(file,file)
RUNS(user,program) DERIVED FROM(recorddocument)
RUNS(user,module) DERIVED FROM(record,file)

DERIVEDFROM(record,record)

CALLS(program,program) GOES TO(system,system)
CALLS(program,module) GOES TO(program,program)
CALLS(module,module) GOESTO(module,module)

Source: [Ref. 15.p. 51]

77

as needed by the user or dictated by the environment [Ref.

15:p. 501.

The Quality-Indicator facility of the IRDS provides

a metbcd of defining quality indicators and assigning them

to entities. Quality indicators are metaentities in the IRD

Schema useful for documentation, such as documenting the

level of standardization of element entities. [Ref. 22:p.

120]

Logical subsets of the IRD are defined as Views. A

View is a set of entities, along with their associated

attributes, the set of relationships that exist between the

entities, and the set of operations that may be performed in

that view. [Ref. 22:p. 120]

Core security is provided by a Dictionary-User

entity which has attributes to define level of access.

Additionally, the relationship Dictionary-User-Has-View

determines the views, or logical subsets of the IRD, which

may be accessed by the user. [Ref. 22:p. 120]

Two user interfaces are specified by the IRDS, a

menu driven panel interface and a command language

interface. Either one or both may be included in an IRDS

implementation. (Ref. 15:p. 50]

In the following section an expanded IRD schema for

the RAMP database a',chitecture is proposed. This discussion

will f3cus only on the c. re system-standard schema and will

not consider additional features.

78

D. EXPANDED IRD SCHEMA FOR RAMP

A Flexible Manufacturing System such as RAMP includes

some entity-types and relationship-types not described in

the core system-standard schema discussed in the previous

section. This section attempts to identify those

characteristics which are unique to the RAMP SMP

Manufacturing System and to define schema descriptors for

these characteristics which could be added to the core IRD

Schema.

1. Entity-types

Most, if not all, of the entity-types comprising the

core system-standard schema are useful in implementing an

IRDS in the RAMP database architecture. Capacity

Requirements Planning and ProductionControl are two

instances of the entity-type PROGRAM. The program modules

Checkfor Capacity Problem and Determine Capacity

Availability are instances of the entity-type MODULE. Data

stores such as ToolInventory, ShopWork Order, Order

Status, and Planned Preventive Maintenance are all instances

of the entity-type FILE.

Levels of the RAMP control hierarchy (cell, worksta-

tion, equipment) can be designated as entity-types in an

expanded IRD Schema. Instances of the entity-type CELL are:
ProductionandInventoryControl_Cell, Manufacturing_

Engineering_ Cell, Manufacturing Cell, Quality Cell,

InformationManagement_Cell, and CommunicationsCell.

"79

MaterialPreparation, HorizontalMachining_Center,

TurningCenter, and ShippingWorkstations are a few examples

of instances of the entity-type WORKSTATION. Lathe, Drill

Grinder and BandSaw are instances of the entity-type

EQUIPMENT.

At the System level of the RAMP hierarchy is the

RAMP Order Manager (ROM) (Ref. 9:p. 3.1-7L]. Interfaces to

ROM are provided by Command/Status Services (Figure 10).

The relationship between ROM and the IRDS for the common

database is active. Individual applications at the local

level are dependent upon the IRDS which manages the metadata

of the common database. It is the ROM which provides local

applications with access to the common data by receiving

status reports, such as "down load complete" or "execution
complete," and issuing commands such as "execute applica-

ion" or "up load data." COMMAND and STATUS can be defined

as entity-types. DownLoadComplete and Execution Complete

are instances of the entity-type STATUS. Execute Applica-

tion and Up LoadData are instances of the entity-type

COMMAND.

Other entity-types to be defined in an expanded IRD

are the entity-types PROCESS and APPLICATION. As discussed

in Chapter II, the ROM coordinates and manages the "process"
or sequence of applications necessary to complete a function

or request. Two instances of the entity-type PROCESS are

OrderProcess and Order InquiryProcess. Each commercial

80

STATUS COMMANDS

0

p REQUEST DOWN LOAD DATA

'- DOWN LOAD COMPLETE EXECUTE APPLICATION m z

EXECUTION- ROM0 EXECUTION COMPLEtE UP LOAD DATA mv,

i UP LOAD COMPLETE REQUEST COMPLETE

Figure 10. ROM Command/Status Services
[Ref. 9:p. 3.3.1-L4]

"off-the-shelf application package is defined as an instance

of the entity-type APPLICATION. Table 9 lists the entity-

types of this expanded IRD Schema.

2. Relationship-types

The core relationship-type CONTAINS is a necessary

schema descriptor in the RAMP database architecture.

Entity-types of the expanded IRD participate in the

relationship-type CONTAINS as follows: CELL-CONTAINS-

WORKSTATION, WORKSTATION-CONTAINS-EQUIPMENT and PROCESS-

CONTAINS-APPLICATION.

The core relationship-type PROCESSES is not

necessary to an IRD Schema in the RAMP database

architecture. SYSTEM-PROCESSES-FILE is a typical PROCESSES

relationship-type in the core system-standard schema [Ref.

22:p. 116). In Llhe RAM!P SMP Manufacturing System, files are

not "processo-i" as such, but •,ther data is obtained from

81

ii,• >,J,.,.._,_,___

~TABLE 9

EXPANDED IRD SCHEMA TYPES

Entity-types

SYSTEY PROCESS CELL FILE
PROGRAIAi APPLICATION WORKSTATION RECORD

: .. MODULE STATUS EQUIPMENT ELEMENT
USER COMMAND DOCUMENT

BIT-STRING
CHARACTER-STRING
FIXED-POINT
FLOAT

Relationship-types

CONTAINS INITIATES
ACCESSES CALLS
RESPONSIBLE-FOR DERIVED-FROM
RUNS REPRESENTED-AS

. .~*

the file and used by an application to perform a function or

manufacturing process. To capture this relationship, an

additional relationship-type to be defined in an expanded

IRD is ACCESSES. CELL-ACCESSES-FILE and APPLICATION-

ACCESSES-FILE are relationship-types which define

associations between the entity-types CELL, APPLICATION and

FILE.

INITIATES is another relationship-type to be defined

in the expanded IRD Schemaa. STATUS-INITIATES-COMMAND

defines the relationship between the entity-types STATUS ind

COMMAND.

82

The relationship-types of the expanded IRD are shown

in Table 9. Allowable relationships between the entity-

types of the expanded IRD are listed in Table 10.

3. Flexibility

The RAMP SMP Manufacturing System is designed to be

modular to provide for maximum flexibility. The system must

allow for equipment and application programs to be added and

"deleted without a major disruption in the production of

parts. The implementation of RAMP capabilities should be in

stages. Initial RAMP capabilities should include both

manual and automated processes. Some manual processes will

become automated over time. The modularity of the system

will allow for newly automated processes to be easily added

to the system. An IRDS is able to capture the architecture

of the system as it exists. As new capabilitie2s and

components are added to the system, they also are easily

added to the IRDS. Additional schema descriptors can also

be defined as necessary

Storing configqration tables in the dictionary

provides a way for R(-¶ 1o accurately direct and control the

processes and applications being executed at the equipment

and workstation level. The ROM is event-driven with status

reports indicating the next action to be taken. The

relationship-types STATUS-INITIATES-COMMAND and COMAND-

INITIATES-APPLICATION capture this information in the

dictionary. If a new process is added to the capabilities

83

TABLE 10

EXPANDED IRDS RELATIONSHIPS

CONTAINS(cell,workstation) CONTAINS(file,document)
CONTAINS(workstation, equipment) CONTAINS(file,record)
CONTAINS(process,application) CONTAINS(file,element)
CONTAINS(system,system) CONTAINS(filefile)
CONTAINS(system,program) CONTAINS(document,record)
CONTAINS(system~module) CONTAINS(record,record)

CONTAINS(program,program) CONTAINS(record,element)
CONTAINS(program,module) CONTAINS(element, lement)
CONTAINS(document,document) CONTAINS(module,module)
CONTAINS(document,element)

ACCESSES(cell,file) ACCESSES(workstation,file)
ACCESSES(cell,record) ACCESSES(workstation,record)
ACCESSES(cellelement) ACCESSES(workstation,element)
ACCESSES(equipment,file) ACCESSES(program, file)
"ACCESSES(equipment,record) ACCESSES(program,record)
ACCESSES(equipment,element) ACCESSES(program,element)
ACCESSES(module,file) ACCESSES(process,file)
ACCESSES(viodule,element) ACCESSES(process,record)
ACCESSES(module,record) ACCESSES(process,element)
ACCESSES(applicationfile) ACCESSES(application,record)
ACCESSES(application,element)

*NITIATES(status,command)
INITIATES(command,application)

RESP FOR(user,file) DERIVED FROM(document,file)
RESP FOR(user,document) DERIVED FROM(document,document)
RESPFOR(user,record) DERIVED FROM(document,record)
RESPFOR(usher,element) DERIVED 'ROM(element,file)

RESP FOR(us,2r,system) DERIVED FROM(element,document)
RESPFOR(user,program) DERIVED FROM(element,record)
RESPFOR(user,module) DERIVEDFROM(element,element)

DERIVED FROM(file,document)
RUNS(user,system) DERIVED FROM(filefile)
RUNS(user,program) DERIVED FROM(record,document)
RUNS(user,module) DERIVEDFROM(record,file)

DERIVEDFROM(record,record)

CALLS(program,program) GOES TO(system,system)
CALLS(program,mrodule) GOES TO(program,program)
CALLS(module,module) GOES TO(module,module)

84

of the RAMP SMP Manufacturing System, the configuration

table is modified to reflect this new process or

application.

E. DATA ADMINISTRATION

The discussion in Chapter II included data administra-

tion policies necessary in a computer integrated

manufacturing environment to provide for database integrity,

security, concurrency, transaction granularity, back-up and

recovery, and information resource management. The previous

section addressed the issue of information resource

management and suggested an Expanded IRD Schema for the RAMP

architecture. The discussion which follows examines the

remaining data administration issues in the context of the

specific RAMP SMP Manufacturirn System.

1. Database InteQritv

Although it is impossible to ensure that only

correct data are entered into the common databases, the IRDS

can validate the range :'f an entry into the database. The

attribute-types LOW-OF-RANGE and HIGH-OF-R.NGE can be

associated with the ELEMENT entity-type. While this method
will ensure that the entry is in the proper range, it cannot

ensure a correct value.

As discussed earlier, integrity constraints are also

enforced by the IRDS by limiting which entity-types can

participate in which relation-types. ELEMENT-CONTAINS-.

RECORD is not a valid relationship, for example. Dolk [Ref.

85

15] shows how prestored SQL commands can be used to check

that only proper relationships have been entered in the IRD.

Including the data formats of both the local

databases and the common databases in the IRDS improves data

integrity by enforcing the proper format structure. Data

being up loaded to the common database must be validated as

being in the common database format. When ROM, through

command/status services, issues the command to down load

data, the IRDS plays an active role by locating the data in

the common database and facilitating the conversion by also

defining the local data format.

2. Database Security

The common database is accessed only by the RAMP

Order Manager (ROM) through the DBMS of the Information

Management function. By including in the IRDS what data are

needed by which applications, the ROM can ensure that only

necessary data are down loaded to the functional components.

This information is captured in the expanded IRD relation-

ship-types APPLICATION-ACCESSES-FILE and APPLICATION-

ACCZSSES-RECORD. Each process, or sequence of applications,

must be defined in terms of the common data needed by these

application programs. This is similar to access and

capability lists. However, only the ROM issues the commands

to down load data.

In the RAMP SMP database architecture, local

databases are accessed only by the applications local to the

86

functional component at that particular node. These

applications are unaware of data that may exist at any other

node. Because of this partitioning of the data, each node

must be responsible for providing some degree of security

for the local data.

3. Database Update and Concurrency Control

The RAMP database architecture is designed to

eliminate many concurrency issues. The RAMP Order Manager

(ROM) manages all applications and processes all requests.

The ROM is event driven and sequential in nature. Commands

are issued by the ROM upon receipt of status data. Data

shared by more than one functional component reside in a

common database and are down loaded to a local database when

necessary to an application. Due to the sequential nature

of the applications, the next application is not initiated

until the previous application has completed and the data,

which may have been modified, are up loaded to the common

database. This method does not allow two applications to

simultaneously update the same data. Neither can one

application read data while another is updating the same

data. (Ref. 9:p. 3.3.1.2-R1O-Rll]

At any point in time, common data residing at local

databases will not necessarily be consistent. However,

under normal operating conditions it is irrelevant whether

the correct data reside at the local level at any particular

time because an application receives the correct data from

87

the common database immediately before that application

executes.

4. Transaction Granularity

Logical transactions in the RAMP SMP Manufacturing

System must be defined to ensure that all databases can be

recovered in the event of a failure in software, hardware or

equipment. The determinations of how many actions should be

included in a logical transaction is critical. For example,

suppose a transaction includes an entire process, or

sequence of applications and upon completion of the third

application, a data up load fails. The local database may

be correct and current while the common database, upon which

all applications depend, is not. If the process is to be

restarted, the common database may be recovered to undo all

actions taken before the process began. But what program

has responsibility for recovering the local databases which

have been changed by this partially executed process? The

common data residing at the local level will be updated the

next time data are down loaded, but any local data which

were changed as a result of the completed applications may

now be incorrect if the process must be restarted.

At the local level transactions cannot by definition

encompass more than a single application. The transaction

begins when the Process Manager component of ROM requests

the Application Manager to invoke an application and ends

when the ROM Manager sends the status message indicating

88

that the data up load is complete. At that point, data has

been physically committed to the local database. However

this commitment may not (probably will not) coincide with

the transaction boundary of the calling process. Thus local

databases may be committed while the common global database

is not. This can cause serious inconsistencies if a system

failure occurs.

The inconsistencies which may occur between the

local databases and the common databases present another

problem. If a part has completed operations at the

horizontal machining center and is now ready to undergo

deburring when a data up load fails, what happens to the

part? How much manual intervention is required to restart

the physical process of deburring? Where is the manufactur-

ing process restarted physically and how are the common

database and local databases recovered through rollback/

rollforward to reflect that precise point?

If a failure occurs at the equipment level, it will

be necessary for ROM to reinitiate a process or application.

Here again the question arises of restarting a physical

process and ensuring that the database is rolled back to

reflect the correct data.

Another more dire possibility is that the ROM could

fail. In this case, it is necessary to know which
applications have been completed. Without access to the

application checkpoint file it may not be possible to

89

determine this. Which local databases reflect the current

state and which do not? Is it possible to rollback all

local databases to the same point in time and could the

common database be reconstructed and recovered?

Using a hybrid scheme of data placement by

replicating some of the data in the RAMP architecture and

partitioning the rest is a feasible alternative in a

heterogeneous environment. It does, however, present the

nontrivial problem of maintaining consistency among the

databases should a failure occur.

5. Database Back-up and Recovery

As discussed in Chapter II, Before-and-After images

of updates to the common database will be recorded in a

recovery log. In the event of a program failure or system

hardware or software failure, Roll Back will be initiated to

recover the database. If the disk media fails, an archived

database and the recovery log will be used to Roll Forward

the database. [Ref. 8:p. 191]

Writing Before-and-After imag. to a recovery log is

a relatively straightforward approach. The major

difficulties are defining the transaction granularity and

ensuring consistency among the local databases and the

common databases, as already discussed, and the related

issue of the amount of storage space required for the

recovery log.

90

In addition to back-up aid recovery procedures for

the common databases, it is also necessary for each local

database to provide for back-up and recovery of data which

reside only at a functional component node. Since this is a

function of the COTS which "owns" the local database, this

may be problematic.

F. SUMMARY

Date. administration in a distributed environment such as

RAMP presents many difficulties. Many of these are problems

inherent in distributed systems. The manufacturing

environment presents another set of problems which must be

addressed. In order to provide t.ie most efficient operation

on the factory floor, a variety of equipment, computer

systems, hardware, and software must be integrated and

controlled.

Data administration in a distributed environment where

some of the data are replicated and the rest partitioned

becomes quite complex. In RAMP, the RAMP Order Manager

(ROM) controls the down loading of data from, and the up

loading of data to, the common database. An Information

Resource Dictionary System (IRDS) is suggested to describe,

define and locate the data of the RAMP common database. The

IRDS is expanded to include characteristics peculiar to the

RAMP SMP Manuiacturing System environment.

Database integrity, security, update, and concurrency

control are all issues which must be addressed both at the

91

common database level and at the local level. Defining the

size of a transaction or logical unit of work is critical to

ensuring adequate database back-up and recovery. Many

questions need to be resolved. Procedures must be defined

to ensure database recovery should a failure of equipment or

software occur at any level within RAMP. In particular, the

database must be recovered to coincide with the physical

process of manufacturing parts.

9

V. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

A. SUMMARY

The RAMP prototype facility at Charleston Naval Shipyard

(CNSY) will employ state of the art technologies to develop

small mechanical parts for the United States Navy. As a

heterogeneous flexibip manufacturing system (FMS), it will

have the ability to reconfigure its hardware and software

without significant disruption to production requirements.

RAMP is expected to provide a tremendous improvement over

the current procurement processes by reducing lead time

requirements up to 90%. If successful, it will be

permanently installed at CNSY and other Naval facilities,

with the potential for installation at additional private

facilities.

Chapter II provided the reader with an introduction to

RAMP. A brief overview of the the current procurement

process was provided, followed by a detailed discussion of

'the RAMP functional components, and how RAMP is expected to

improve the production process.

Chapter II continued with an overview of the data

placement and management schemes in use at RAMP. While data

placement was determined to be hybrid in nature, data

management and control is centralized through the RAMP Order

Manager (ROM). ROM's three functional components--ROM

93

Manager, Process Manager, and Application Manager--coordi-

nate processing and data transfer requirements between the

global and local databases.

Chapter III reviewed distributed processing concepts,

and discussed why distribution is necessary in the CIM and

FMS environments. The functions normally encountered in CIM

environments, as well as those in use at RAMP were briefly

reviewed. Data administration considerations were then

discussed, with particular emphasis on the need for .

information resource dictionary system (IRDS). Finally, the

Integrated Manufacturing Database Administration System

(IMDAS) developed by the National Bureau of Standards (NBS)

to address some of the complexities encountered was

discussed.

Chapter IV related the data administration considera-

tions of Chapter III to the specific RAMP environment.

While concurrency problems appear to be negligible in RAMP,

the remaining issues of transaction granularity, security,

backup and recovery and overall database integrity need to

be considered. The chapter provided a detailed review of an

expanded IRDS geared specifically to the RAMP environment to

facilitate data administration. It is this discussion which

forms the basis for our conclusions and recommendations

which follow.

94

B. CONCLUSIONS AND RECOMMENDATIONS

The RAMP environment is a complex distributed system and

requires extensive data sharing among the various functicnal

components. Because of the multiplicity of databases and

data base management systems (DBMSs) in RAMP, a system-wide

data dictionary/directory system (DD/DS, is required. Since

a typical DD/DS does not capture all of the relevant meta-

data involved, it is recommended instead that an IRDS based

upon the NBS architecture be employed.

IMDAS was developed as a Federal Information Processing

Standard (FIPS) which could be easily and readily adapted to

a specific FMS environment. The IRDS contains a core
~.

system-standard schema which can be adapted to the IMDAS

architectureas well as RAMP. The extensibility feature also

provides a mechanism by which the IRDS can be expanded to

include any additional attributes, entities, and relation-

ships necessary as the FMS evolves.

The FIPS IRDS forms an important basis for information

management in RAMP. By including the additional entity-

types encountered in RAMP--CELL, WORKSTATION, and

EQUIPMENT--the IRDS can model the unique RAMP environment.

While the relationship-type "PROCESSES" is not required by

RAMP, the addition of "ACCESSES" should be included. The

additional entity and relationship types discussed in

Chapter IV can be readily included as well.

95

The centralized nature of the ROM provides an excellenc

mechanism by which to create an active IRDS facility. Indi-

vidual applications at the local level are forced through

the IRDS to enhance security and integrity constraints. As

the system grows and changes in architecture, the IRDS can

be easily expanded to include any additional schema

descriptors which may become necessary.

The issue of defining logical transactions and database

backup/recovery has not been resolved, however. The current

ROM does not appear to provide adequate capabilities in
these areas and nmay have to be expanded to accommodate these

potential problems. The role of an IRDS in facilitating

backup and recovery in a heterogeneous environment is a

fruitful topic for future research.

96

LIST OF REFERENCES

1. Bryant, Mike, A Study of the Adequacy of Existing Navy
Industrial Fund Cost Accounting Prccedures for Flexible
Manufacturing Systems, Master's Thesis, Naval
Postgraduate School, Monterey, California, June 1988.

2. Bennet, Robert E., and others, Cost Accounting for
Factory Automation, National Association of
Accountants, 1987.

3. Naval Supply Systems Command, Department of the Navy,
"RAMP Program Plan Summary," Washington, D.C., June
1986.

4. Houts, Robert E. Jr., "Logistics Research and
Development--Near Term Plans," June 1986.

5. American Manufacturing Research Consortium, "Operational
Concept Document for the RAMP Small Mechanical Parts

(SMP) Manufacturing System," Small Mechanical Parts Type
B Specifications for the RAMP/RTIF Program, RTIF Program
Document Number OCR 003001-1, 27 January 1988.

6. Besant, C.B., and Lui, C.W.K., Computer-Aided Design and
Manufacture, West Sussex, England: Ellis Horwood
Limited, 1986.

7. American Manufacturing Research Consortium, "Prime Item
Development Specification," Small Mechanical Parts Type
B Specifications for the RAMP/RTIF Program, RTIF Program
Document Number PIR 003001-1, 22 January 1988.

8. American Manufacturing Research Consortium, "Software
Requirements Specification," Small Mechanical Parts Type
B Specifications for the RAMP/RTIF Program, RTIF Program
Document Number SRR 003001-1, 26 January 1988.

9. American Manufacturing Research Consortium, RAMP SMP
Critical Design Review, 30 August-I September 1988.

10. American Manufacturing Research Consortium, "Interface
Requirements Specification," Small Mechanical Parts Type
B Specifications for the RAMP/RTIF Program, RTIF Program
Document Number IRR 003001-1, 26 January 1988.

97

11. Sloman, Morris, and Krenser, Jeff, Distributed Systems
and Computer Networks, Prentice/Hall International,
1987.

12. Beeby, William D., "The Heart of Integration: A Sound
Data Base," Computers and Manufacturing Productivity,
Ronald K. Jurgen, ed., New York: IEEE Press, 1987.

13. Davis, W., Jones, A., and Ram, S., "Data Management
Strategies for Computer Integrated Management Systems,"
unpublished paper, National Bureau of Standards.

14. Melkanoff, Michel A., "The CIMS Database: Goals,
Problems, Case Studies and Proposed Approaches
Outlined," Industrial Engineer, pp. 78-93, November
1984.

15. Dolk, Daniel R., and Kirsch, Robert A. II, "A Relational
Information Resource Dictionary System," Communications
of the ACM, Vol. 30, January 1987.

16. Bray, Olin, Distributed Database Management Systems,
Lexington Books, 1982.

17. Leong-Hong, Belkis W., and Plagman, Bernard K., Data
Dictionary/Directory Systems: Administration,
Implementation and Usage, John Wiley & Sons, 1982.

18. Libes, Don and Barkmeyer, Edward "IMDAS--An Overview,"
undated article: Integrated Systems Group, National
Bureau of Standards, Gaithersburg, Maryland.

19. Rauch-Hindin, Wendy, "True Distributed DBMSes Presage
Big Dividends," Mini-Micro Systems, pp.65-73, May 1987.

20. U.S. Department of Commerce, National Bureau of
Standards, An Architecture for Distributed Data
Management in Coptr Integrated Manufacturing, by
Edward Barkmeyer and others, January 1986.

21. American Manufacturing Research Consortium,
"Implementation Model," Small Mechanical Parts Type B
Specifications for the RAMP/RTIF Program, RTIF Program
Document Number IMR 001001-0, 19 November 1987.

22. Goldfine, Alan H., "The Information Resource Dictionary
System," paper presented at the International Conference
on Entity-Relationship Approach, 4th, Chicago, Illinois,
28-30 October 1985.

98

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information System 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Director, Information Systems (OP-945)
office of the Chief of Naval Operations
Navy Department
Washington, D. C. 20350-2000

4. Computer Technology Programs, Code 37
Naval Postgraduate School
Monterey, California 93943-5000

5. Naval Supply Systems Command (PML 5505M) 3
Attn: Lorna B. Estep
Department of the Navy
Washington, D. C. 20376-5000

6. Professor Daniel R. Dolk, Code 54DK 3
Department of Administrative Sciences
Naval Postgraduate School
Monterey, California 93943-5000

7. Professor Alan W. McMasters, Code 54MG
Department of Administrative Sciences
Naval Postgraduate School
Monterey, California 93943-5000

8. Professor Kenneth J. Euske, Code 54EE
Department of Administrative Sciences
Naval Postgraduate School
Monterey, California 93943-5000

9. Lieutenant Catherine T. Eads 2
Navy Regional Data Automation Center
4400 Dauphine Street
New Orleans, Louisiana 70145-7700

10. Lieutenant Pamela A. Smith 2
10501 Curran Boulevard #4H
New Orleans, Louisiana 70127

99

